Walchand College of Engineering

(Government aided autonomous institute)

Vishrambag, Sangli. 416415

Credit System for Minor Certification

in

Artificial Intelligence and Machine Learning

(2019-2022)

Offered by

Department of Information Technology

Credit System for Minor Certification in Artificial Intelligence and Machine Learning

offered by Department of Information Technology (AY 2019-22)

Sr.No.	Year	Sem	Course Code	Course Name	L	T	P	Hrs	Credit s	ISE-1/ T1/ LA1	MSE	1SE-2/ T2/ LA2	ESE
1	SY	I	1ITM01	Fundamentals of Artificial Intelligence	3	-	-	2+1*	3	10	30	10	50
2	B.Tech	II	1ITM02	Introduction to Machine Learning	3	-	-	2+1*	3	10	30	10	50
3	TY	I	1ITM03	Data Science for Engineers		-	-	2+1*	3	10	30	10	50
4	B.Tech	II	1ITM04	Machine Learning in Practice		-	-	2+1*	3	10	30	10	50
5		I	1VA0017	Fundamentals of Deep Learning		-	-	2	2	20	-	20	60
6	Final	I	1VA0023	Advanced Deep Learning	2	-		2	2	20	-	20	60
7	Year B.Tech	II	1VA0024	Project on AIML Phase I	-	-	4	4	2	30	-	30	40
8		II	1VA0025	Project on AIML Phase II	-	-	4	4	2	30	-	30	40
				Total	16	-	8	24	20				

(Note: "" indicates Flipped classroom)

HoD

(Dr. A J Umbarkar)

(Department of Internation Technology) Walchand College of Engineering, Sangli.

Mrs. 13,5, Shitty

(M B Narnaware)
Assistant Professor,
(Department of Information Technology)

Walchand College of Engineering, Sangli.

Credit System for Minor Certification in Artificial Intelligence and Machine Learning offered by Department of Information Technology (AY 2019-22)

		Wa		llege of Eng	gineering, S mous Institute)	angli			
***************************************				2019-22			,		
			\mathbf{C}	ourse Informa	ition				
Progr	ramme		Minor Certification in AIML						
Class	, Seme	ster	Second Year	B. Tech., Sem	I				
Cour	se Cod	е	1ITM01						
Cour	se Nam	e	Fundamenta	ls of Artificial	Intelligence				
Desir	ed Req	uisites:	Foundation i	n Mathematics					
000000000000000000000000000000000000000	Teachi	ng Scheme		Exam	ination Schem	e (Marks)			
Lectu	re	2+1 (Flipped) Hrs/week	ISE1	MSE	ISE2	ESE	Total		
Tutor	ial	-	10	30	10	50	100		
Practi	ical	-							
Intera	ection	_			Credits: 3		2		
	T		C	Course Objecti	ves				
1	To ge	t acquaint with co	ncepts in Artif	icial Intelligen	ce (AI)				
2	To ap	prehend the recen	t trends in AI						
3	To red	cognize applicatio	ns of AI						
		Cours	e Outcomes (CO) with Bloo	m's Taxonomy	Level			
At the	end of	the course, the stu	dents will be a	able to,					
CO1	To rec	cognize the proble	m-solving tecl	nniques in Arti	ficial Intelligen	ce	Understand		
CO2	To ap	prehend the recen	t trends in AI				Apply		
	I				***************************************	***************************************			

ale Make

Module	Module Contents	Hours					
I	Introduction and Searching in AI AI: History, Trends and Future, Turing Machine Test, Application of AI, Characteristics of AI problems	4					
II	Uninformed search techniques Problem Solving techniques, state space representation, Uninformed search techniques, DFS, BFS, Iterative deepening search, bi-directional search techniques	4					
III	Informed Search Technique Heuristic search techniques, Hill climbing techniques, Best First search, A* algorithm, constraints satisfaction, Means-Ends analysis						
IV	Knowledge Representation Propositional and predicate knowledge, Unification algorithm, Resolution in predicate logic, forward and backward chaining and conflict resolution	4					
V	Structured Knowledge Representation Semantic nets, frames, conceptual dependency, scripts, probabilistic and uncertainty knowledge, representations, certainty factors						
VI	Planning Introduction, planning as problem-solving, STRIPS, forward and backward planning, non-linear planning	5					
1 S. Sy	Text Books Janakiraman, K Sarukesi, P Gopalakrishnan, "Foundations of Artificial Intelligence ystems Approach", 3 rd Edition, Prentice Hall	and Experi					
2 Sa	aroj Kaushik, "Artificial Intelligence"						
	References						
1 Pr	of. Shyamanta, M Hazarika, IIT Guwahati, "Fundamentals of Artificial Intelligence" PTEL/ SWAYAM (for flipped classroom)	course on					
	Useful Links						
1 htt	ps://www.coursera.org/learn/ai-for-everyone						
	ps://www.udemy.com/topic/artificial-intelligence/						

We State

2019-22

Course Information						
Programme	Minor Certification in AIML					
Class, Semester	Second Year B. Tech., Sem II					
Course Code	1ITM02					
Course Name	Introduction to Machine Learning	***************************************				
Desired Requisites:	Foundation in Mathematics and Statistics	***************************************				

Teachi	ng Scheme	Examination Scheme (Marks)						
Lecture	2+1 (Flipped) Hrs/week	ISE1	MSE	ISE2	ESE	Total		
Tutorial	-	10	30	10	50	100		
Practical	-			***************************************				
Interaction	-			Credits:	3			

	Course Objectives
1	To get acquaint with concepts in Machine Learning
2	To apprehend the recent trends in Machine Learning
3	To make able to understand applications of Machine Learning

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO1	To realize the problem-solving techniques in Machine Learning	Understand
CO2	To apply the recent trends in Machine Learning	Apply
CO3	To make able to understand applications of Machine Learning	Evaluate

Module	Module Contents	Hours
I	Introduction and Regression Analysis: Machine Learning concepts, Supervised learning, Unsupervised learning, linear regression in one variable, cost function, gradient descent, linear regression with multiple variables: gradient descent	4

IJ	Logistic Regression: Classification, hypothesis representation, decision boundary, cost function, simplified cost function and gradient descent, optimization, one v/s all	4
II	Neural Networks: MP Neuron, Simple perceptron, non-linear hypothesis, representation, multi-class classification, one v/s all Neural Networks Learning: Back propagation, multilayer feed forward neural network	5
IV	Support Vector Machines: Optimization objective, mathematics behind large margin classification, kernels using as SVM	4
V	Learning Theory: Regularization, bias/ Variance trade-off, error analysis, ensemble methods, practical advice on how to use learning algorithms, precision/recall trade-off	4
VI	Unsupervised Learning: Clustering, k-means, EM, principal component analysis, outliers detection	5

	Text Books	
1	Text Books Tom Mitchell, "Machine Learning", McGrawHill, 1997	
1 2		ly
	Tom Mitchell, "Machine Learning", McGrawHill, 1997	ly
	Tom Mitchell, "Machine Learning", McGrawHill, 1997 Aurelien Gern, "Hands-on Machine Learning with Scikit Learn & Tensorflow", O'Reil	ly
2	Tom Mitchell, "Machine Learning", McGrawHill, 1997 Aurelien Gern, "Hands-on Machine Learning with Scikit Learn & Tensorflow", O'Reil References	ly
2	Tom Mitchell, "Machine Learning", McGrawHill, 1997 Aurelien Gern, "Hands-on Machine Learning with Scikit Learn & Tensorflow", O'Reil References Andrew N G, "Coursera: Machine Learning"	ly
2	Tom Mitchell, "Machine Learning", McGrawHill, 1997 Aurelien Gern, "Hands-on Machine Learning with Scikit Learn & Tensorflow", O'Reil References Andrew N G, "Coursera: Machine Learning"	ly
2	Tom Mitchell, "Machine Learning", McGrawHill, 1997 Aurelien Gern, "Hands-on Machine Learning with Scikit Learn & Tensorflow", O'Reil References Andrew N G, "Coursera: Machine Learning" http://www.stanford.edu/class/cs229/materials.html	ly
1 2	Tom Mitchell, "Machine Learning", McGrawHill, 1997 Aurelien Gern, "Hands-on Machine Learning with Scikit Learn & Tensorflow", O'Reil References Andrew N G, "Coursera: Machine Learning" http://www.stanford.edu/class/cs229/materials.html Useful Links	ly

as Made

2019-22

Course Information					
Programme	Minor Certification in AIML				
Class, Semester	Third Year B. Tech., Sem I				
Course Code	1ITM03				
Course Name	Data Science for Engineers				
Desired Requisites:	Foundation in Mathematics, Introduction to Machine Learning				

Teachi	ng Scheme	Examination Scheme (Marks)					
Lecture	2+1 (Flipped) Hrs/week	ISE1	MSE	ISE2	ESE	Total	
Tutorial	-	10	30	10	50	100	
Practical	_				**************************************		
Interaction	_			Credits:	3		

	Course Objectives
1	To get acquaint with concepts in Machine Learning (ML)
2	To apprehend the recent trends in Data Science
3	To make able to understand the applications in Data Science
	Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO1	To understand the mathematical foundations required for data science	
CO2	To apply the first level data science algorithms	
CO3	To evaluate data science problem solving algorithms and frameworks with a practical case study	Evaluate

Module	Module Contents	Hours			
I	Basics of Python Tools required for Data Science, Introduction to Spyder, setting working directory, creating and saving a script file, file execution, clearing console, removing variables from environment, clearing environment, commenting script files, variable creation, arithmetic and logical operations, data types	4			
II	Data types, Control structures and Libraries Strings, lists, arrays, tuples, dictionary, sets, range, Reading files, exploratory data analysis, data preparation and preprocessing, If-else family, for loop, for loop with if break, while loop and functions, Numpy, Pandas				
III	Data Visualization using Matplotlib and Seaborn libraries Scatter plot, line plot, bar plot, histogram, box plot, pie chart, pair plot	5			
IV	Unsupervised Learning Why data reduction?, key idea behind PCA, linear algebra behind PCA, PCA in practice, clustering algorithm in practice, case study of k-means algorithm				
V	Interactive Python dashboards with Plotly and Dash Plotly Basic – scatter plot, bar plot, bubble plot, box plot, histograms, heat maps, dashboard components, interactive components in dashboard				
VI	Case Study Regression and Classification (Use of any case study using a dataset) Regression Datasets - Crime_in_India, Salary_Classification, Income_Data, Classification Datasets - Shopping_Mall, Social_Network_Ads	5			
	Text Books				
1 In	ntroduction to linear algebra - by Gilbert Strang				
2 A	pplied statistics and probability for engineers – by Douglas Montgomery				
3 N	Iastering Python for data science, Samir Madhavan				
	References				
1 S	cikit-Learn User Guide, Release 0.23.1, scikit-learn developers, May 19, 2020				
2 P	ython 3.x Documentation				
	Useful Links				
1 ht	tps://docs.python.org/3/tutorial/introduction.htm				

au Ma

			2019-22				
		C	ourse Informa	ition			
Programm	e	Minor Certif	ication in AIM	L			
Class, Semo	ester	Third Year B. Tech., Sem II					
Course Coo	le	1ITM04					
Course Name		Machine Learning in Practise					
Desired Requisites:		Introduction to Machine Learning, Data Science for Engineers					
Teach	ing Scheme		Exan	nination Schen	ne (Marks)		
Lecture	2+1 (Flipped) Hrs/week	ISE1	MSE	ISE2	ESE	Total	
	***************************************			<u> </u>		***************************************	

Interaction	<u>-</u>	Credits: 3

	Course Objectives
1	To inculcate the paradigm shift technique, Machine Learning into students
2	To discuss the applications of different Machine Learning technology
3	To present the research scope of Machine Learning

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

Practical

CO1	Comprehend the usage of Scikit-Learn and Tensorflow towards Machine Learning projects	Understand
CO2	Apply the conceptual understanding of Machine Learning algorithm on real world problems	Apply
CO3	Evaluate the performance of Scikit-Learn and Tensorflow for Machine Learning algorithms	Evaluate

Modul	e Module Contents	Hours			
I	Introduction and Scikit-Learn Introduction to Scikit-Learn, statistical learning for scientific data processing, working with Text Data, choosing the right estimator, Estimator basics: fitting and predicting, model evaluation, Scikit-Learn API reference				
II	How to use Tensorflow Why to use Tensorflow?, Introduction to Tensorflow, installing tensorflow, overview of Tensorflow, using libraries in Tensorflow				
III	Regression using Scikit-Learn Using Scikit-Learn for regression problems, using scikit-learn for logistic regression, applying regularization concepts using Scikit-Learn on real-world data	5			
IV	KNN, Decision Trees, Random Forest using Scikit-Learn Applying KNN, Decision Trees, Random Forest algorithm on real world dataset using Scikit-Learn API	4			
V	Support Vector Machine, Clustering (Unsupervised Learning) using Scikit-Learn Testing Support Vector Machine, k-means algorithm on real world dataset, using Scikit-Learn	4			
VI	Neural Network using Tensorflow Exploring the Tensorflow for Artificial Neural Networks on real world dataset	5			
	Text Books				
3	Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn and Tensorflow con and Techniques to build intelligent systems", O'Reilly, First Edition, 2017	cepts, Tools			
	Guillerno Moncecchi, Raul Garreta, "Learning Scikit-Learn: Machine Learning in Python", Packt Publishing Ltd. First Edition, 2013				
4	Bharath Ramsundar, Reza Bosagh Zadeh, "Tensorflow for Deep Learning: From Linear to Reinforcement Learning", O'Reilly, First Edition, 2018	Regression			
	References				
1	Scikit-Learn User Guide, Release 0.23.1, scikit-learn developers, 2020				
2	https://www.tensorflow.org/guide				
	Useful Links				
1	nttps://developers.google.com/machine-learning/crash-course				
	nttps://developers.google.com/machine-learning/crash-course nttps://www.tensorflow.org/resources/learn-ml				

2019-22

	Course Information				
Programme	Minor Certification in AIML				
Class, Semester	Final Year B. Tech., Sem I				
Course Code	1VA0017				
Course Name	Fundamentals of Deep Learning				
Desired Requisites:	Familiarity with basic knowledge of mathematics. (It would be beneficial if the participants have done a course on Introduction to Machine Learning)				

Teaching Scheme		Examination Scheme (Marks)				
Lecture	2	T1	MSE	T2	ESE	Total
Tutorial	_	20	<u>—</u>	20	60	100
Practical	_					
Interaction	_			Credits	: 2	

	Course Objectives
1	To introduce the paradigm shift technique, deep learning to the students.
2	To elaborate the deep learning methods in real world applications
3	To explain deep learning concepts
	Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO1	Understand the basics of Deep Learning and optimization techniques in deep learning.			
CO2	Apply the regularization techniques in deep learning and Measure strengths and weaknesses of various deep learning approaches.			
CO3	Evaluate Principal Component Analysis(PCA) and its interpretations, Singular Value Decomposition, Auto encoders and relation to PCA.			

Modul	e Module Contents	Hours
I	Fundamentals of Neural Networks: McCulloch Pitts Neuron, Thresholding, Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feedforward Neural Networks. Backpropagation algorithm.	5
II	Optimizations in Gradient Descent: Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, AdaGrad, RMSProp, Adam, Bias correction in Adam	4
III	Regularization: Regularization: Bias Variance Trade off, L2 regularization, Early stopping, Data-set augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout.	4
IV	Principal Component Analysis: Eigenvalues and eigenvectors, Basis, Principal Component Analysis and its interpretations, Singular Value Decomposition,	4
V	Autoencoders and relation to PCA: Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders	4
VI	Greedy Layer Wise Pre-training: Greedy Layer wise Pre-training, Better activation functions, Better weight initialization methods, Batch Normalization.	5
1	Text Books [an GoodFellow, Yoshua Bengio and Aaron Courville "Deep Learning". The	MIT Press
	Cambridge, Massachusetts London, England, 2017 Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn and tensorflow", O	Pailly Dec
	2017	Kemy, Dec
	References	
1]	Prof. Mitesh M. Khapra, "Deep Learning", course on NPTEL, July 2018	
2	Andrew N G, "Deep Learning Specialization", Coursera online course	
	Useful Links	
	https://www.coursera.org/specializations/deep-learning	
	ttps://www.udemy.com/topic/deep-learning/	
3 h	ttps://online.stanford.edu/courses/cs230-deep-learning	

BUILD

10

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

2019-22

Course Information			
Programme	Minor Certification in AIML		
Class, Semester Final Year B. Tech., Sem I Course Code 1VA0023			
		Course Name	Advanced Deep Learning
Desired Requisites:	Course on Fundamentals of Deep Learning		

Teaching Scheme			Exam	ination Schen	ne (Marks)	
Lecture	2	T1	MSE	T2	ESE	Total
Tutorial	-	20	-	20	60	100
Practical	_					
Interaction	_			Credits:	2	

	~ 1	•	•
TIPCO	116	inot	TATOS
urse	V/I /		BA AL WAY

- 1 To introduce the advanced concepts in deep learning to the students.
- To elaborate the deep learning methods in real world applications in Computer Vision & Natural Language Processing.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO1	Understand the advanced concepts of Deep Learning and the advanced techniques in deep learning for real models.	Understand
CO2	Apply the techniques in deep learning with respect to CV & NLP and Measure strengths of advanced deep learning approaches.	Apply
CO3	Evaluate the Encoder-Decoder Models and get the basic understanding of Generative Adversarial Networks (GANs)	Evaluate

We will be the second

Module	Module Contents	Hours
I	Convolutional Neural Networks: Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, c, Deep Dream, Deep Art, Fooling Convolutional Neural Networks	
II	Recurrent Neural Networks: Recurrent Neural Networks, Backpropagation through time (BPTT), Vanishing and Exploding Gradients, Truncated BPTT, GRU, LSTMs	4
III	Deep Learning for Computer Vision: Object Localization, Object Detection using Convolutional Implementation of Sliding Windows, Bounding Box Predictions, Intersection Over Union, Non-max Suppression, Anchor Boxes, YOLO Algorithm, and Region Proposal Networks.	4
IV	Deep Learning for Natural Language Processing: Vectorial Representation of words, Continues bag of word model, Skip gram model, BERT model, GPT models.	4
V	Encoder Decoder Models: Attention Mechanism, Attention over images. Study of Image Captioning Encoder Decoder Model, Study of Chat Bots etc.	4
VI	Generative Adversarial Networks (GANs): Generative Adversarial Networks (GANs)- Intuition, Architectures, Mathematics behind GANs, Some applications of GANs.	5
¹ Ca	Text Books n GoodFellow, Yoshua Bengio and Aaron Courville "Deep Learning". The ambridge, Massachusetts London, England, 2017	
2 Au 20	urelien Geron, "Hands-On Machine Learning with Scikit-Learn and tensorflow", O	'Reilly, Dec
	References	
1 Pro	of. Mitesh M. Khapra, "Deep Learning", course on NPTEL, July 2018	
2 An	ndrew N G, "Deep Learning Specialization", Coursera online course	
	Useful Links	
1 http	ps://www.coursera.org/specializations/deep-learning	
	ps://www.coursera.org/specializations/deep-learning ps://www.udemy.com/topic/deep-learning/	

ar Alya

2019-22

Course Information			
Programme	Minor Certification in AIML		
Class, Semester	Final Year B. Tech., Sem II		
Course Code	1VA0024		
Course Name	Project on AIML Phase I		
Desired Requisites:	Knowledge of AIML tools and techniques.		

Teaching Scheme		Examination Scheme (Marks)			
Lecture	-	LA1	LA2	Lab ESE	Total
Tutorial	-	30	30	40	100
Practical	4 Hrs/Week				
Interaction	·		C	redits: 2	

	Course Objectives				
1	To introduce the concept of literature survey in AIML to the students.				
2	To elaborate the tools, techniques and methods in real world application of AIML				
	Course Outcomes (CO) with Bloom's Taxonomy Level				
At the er	nd of the course, the students will be able to,				
CO1	Understand the advances in the field of AIML	Understand			
CO2	Evaluate the advanced techniques in the field of AIML	Evaluate			
CO3	Evaluate the strength of advanced AIML approaches	Evaluate			

List of Experiments / Lab Activities

List of Experiments:

Project is to be carried out in a group of maximum 4 to 5 students.

Each group will carry out a project by developing any application software based on the following areas.

- 1. Application can be based on any trending new technology.
- 2. Application can be extended to previous projects.
- 3. Project group should achieve all the proposed objectives of the problem statement.
- 4. The work should be completed in all aspects of design, implementation and testing and follow software engineering practices.
- 5. Project reports should be prepared and submitted in soft and hard form along with the code and other dependency documents. Preferable use online code repositories (github/bitbucket)
- 6. Project will be evaluated continuously by the guide/panel as per assessment plan.
- 7. Presentation and report should use standard templates provided by the department.

Project report (pre-defined template) should be prepared using Latex/Word and submitted along

with soft copy on CD/DVD (with code, PPT, PDF, Text report document & reference material) or

on an online repository.

Students should maintain a project log book containing weekly progress of the project.

•	Text Books
1	Rajendra Kumbhar, "How to Write Project Reports, Ph. D. Thesis and Research Articles" Universal Prakashan, 2015
2	Marilyn Deegan, "Academic Book of the Future Project Report", A Report to the AHRC & the British Library, 2017
***************************************	References
1	https://www.youtube.com/watch?v=0oSDa2kf5I8 (report writing)
2	
	Useful Links
1	https://pats.cs.cf.ac.uk/wiki/lib/exe/fetch.php?media=project-report.pdf
2	http://users.iems.northwestern.edu/~hazen/Writing%20Project%20Reports%202004a.pdf
3	https://www.upgrad.com/blog/java-project-ideas-topics-for-beginners/
4	https://www.geeksforgeeks.org/computer-science-projects/

2019-22

Course Information			
Programme	Minor Certification in AIML		
Class, Semester	Final Year B. Tech., Sem II		
Course Code	1VA0025		
Course Name	Project on AIML Phase II		
Desired Requisites:	Knowledge of AIML tools and techniques		

Teaching Scheme		Examination Scheme (Marks)			
Lecture	-	LA1	LA2	Lab ESE	Total
Tutorial	-	30	30	40	100
Practical	4 Hrs/Week				
Interaction	-		C	redits: 2	

1	1 To introduce the standard practices for AIML projects to the students		
2	To elaborate the tools, techniques and methods in real world application of AIML		
,	Course Outcomes (CO) with Bloom's Taxonomy Le	vel	
At the en	nd of the course, the students will be able to,		
CO1	Deliver the complete project on AIML	Apply	
CO2	Students will submit the report on the project done	Create	

List of Experiments / Lab Activities

List of Experiments:

Project is to be carried out in a group of maximum 4 to 5 students.

Each group will carry out a project by developing any application software based on the following areas.

- 1. Application can be based on any trending new technology.
- 2. Application can be extended to previous projects.
- 3. Project group should achieve all the proposed objectives of the problem statement.
- 4. The work should be completed in all aspects of design, implementation and testing and follow software engineering practices.
- 5. Project reports should be prepared and submitted in soft and hard form along with the code and other dependency documents. Preferable use online code repositories (github/bitbucket)
- 6. Project will be evaluated continuously by the guide/panel as per assessment plan.
- 7. Presentation and report should use standard templates provided by the department.

Project report (pre-defined template) should be prepared using Latex/Word and submitted along

with soft copy on CD/DVD (with code, PPT, PDF, Text report document & reference material) or

on an online repository.

Students should maintain a project log book containing weekly progress of the project.

***************************************	Text Books
1	Rajendra Kumbhar, "How to Write Project Reports, Ph. D. Thesis and Research Articles' Universal Prakashan, 2015
2	Marilyn Deegan, " <i>Academic Book of the Future Project Report</i> ", A Report to the AHRC & the British Library, 2017
	References
1	https://www.youtube.com/watch?v=0oSDa2kf5I8 (report writing)
	Useful Links
1	https://pats.cs.cf.ac.uk/wiki/lib/exe/fetch.php?media=project-report.pdf
2	http://users.iems.northwestern.edu/~hazen/Writing%20Project%20Reports%202004a.pdf
3	https://www.upgrad.com/blog/java-project-ideas-topics-for-beginners/

The state of the s