Module Module Contents Hours I Measurement of Various Process Parameters Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controllers Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 6	Progr				of Engineering							
Course Information Programme B. Tech. (Electrical Engineering) Class, Semester Final Year B. Tech, Sem VII Course Code 50E443 Course Name Open Electrics 1: Industrial Automation Desired Requisites: Basic Electrical Engineering Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week MSE ISE ESE Total Practical - 30 20 50 100 Practical - 30 20 50 100 Practical - Credits: 3 100 100 Practical - Credits: 3 100 This course intends to develop basics of ladder logic programming for PLC. 1 I provides the foundation level knowledge of SCADA System. 3 3 It gives overview of various types of controller for closed loop control. 4 1 Understa 4 It provides the course COO with Bloom 'T Taxonomy Level COU Explain the working of various types of measuring instruments, controllers and acturos for implemementation in industrial automation. Appl </th <th>Progr</th> <th></th> <th></th> <th>1</th> <th></th> <th>nstitute)</th> <th></th>	Progr			1		nstitute)						
Programme B. Tech. (Electrical Engineering) Class, Semester Final Year B. Tech., Sem VII Course Code SOE443 Course Name Open Elective 5: Industrial Automation Desired Requisites: Basic Electrical Engineering, Basic Mechanical Engineering Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/weck MSE ISE Total Tutorial - 30 20 50 100 Practical - Nil Interaction - Open Electives Total Interaction - Open Conse Objectives - Total Interaction - Ocurse Objectives - - Open Consel Cooled loop control. I gives overview of various types of controller for closel loop control. - Appl CO1 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Appl CO2 Heritity the use of various spees of rundustrial Automation. Appl CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Appl CO4 Explore the use of variable speed drives frand t	Progr											
Class, Semester Final Year B. Tech., Sem VII Course Code SOE443 Course Name Open Elective 5: Industrial Automation Desired Requisites: Basic Electrical Engineering, Basic Mechanical Engineering Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - 30 20 50 100 Practical - NII 1 1 100 This course intends to develop basics of ladder logic programming for PLC. 2 1 1 provides the foundation level know ledge of SCADA System. 3 1 <t< th=""><th></th><th>amme</th><th></th><th></th><th></th><th></th><th></th></t<>		amme										
Course Code SOE443 Course Name Open Elective 5: Industrial Automation Desired Requisites: Basic Electrical Engineering, Basic Mechanical Engineering Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - 30 20 S0 100 Practical - Credits: 3 Tits course intends to develop basics of ladder logic programming for PLC. 1 1 This course intends to develop basics of ladder logic programming for PLC. 1 1 2 It provides the foundation level know ledge of SCADA System. 3 1 1 3 It gives overview of various types of controller for closed loop control. 4 1 1 Understa 4 It provides the applications of variable speed drives in industrial automation. Apply Apply CO1 Explain the working of various such as temperature, pressure, force, displacement, speed, flow, keel, humidity, pH etc., signal conditioning, estimation of errors and calibration. Appl												
Course Name Open Elective 5: Industrial Automation Desired Requisites: Basic Electrical Engineering, Basic Mechanical Engineering Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - 30 20 50 100 Practical - Course Objectives 101 11 11 Interaction - Course Objectives 11 <t< td=""><th></th><td></td><td></td><td colspan="9"></td></t<>												
Desired Requisites: Basic Electrical Engineering, Basic Mechanical Engineering Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - Credits: 3 100 100 Interaction - Credits: 3 100 Interaction Various types of controller for closed loop control. 4 1 1 provides the applications of variable speed drives in industries. 00 100 COI Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Appl Appl CO3 Apply the knowledge of PLC and SCADA for Industrial Automation.												
Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - 30 20 50 100 Practical - Course Objectives 100 100 Interaction - Credits: 3 100 This course intends to develop basics of ladder logic programming for PLC. 2 1 It gives overview of various types of controller for closed loop control. 4 1 It provides the applications of variable speed drives in industrias. Course Outcomes (CO) with Bloom's Taxonomy Level CO1 CO1 Explain the working of various types of measuring instruments, controllers and actuators for inplementation in industrial automation. Appl Appl CO2 Identify the use of various actuators in industrial Automation. Appl CO3 Explain the working of various spees of measuring instruments, controllers and actuators for inplementation in industrial automation. Appl CO4 Explain the working of various spees of and SCADA for Industrial Automation. Appl CO4 Explore the use of various control			ites•	<u> </u>	-							
Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - 30 20 50 100 Interaction - Credits: 3 100 This course intends to develop basics of ladder logic programming for PLC. 1 1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the applications of variable speed drives in industria industries. Course Outcomes (CO) with Bloom's Taxonomy Level CO1 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Appl CO2 Identify the use of various actuators in industrial automation. Appl CO4 Explore the use of various process Parame ters Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Introduction to process control, PID controller and tuning, various control configurations such as cascade control, and selective control. 6 III Introduction to various actuators used as flow control valves, Hydraulic and necultaction to various actuatore	Desire	a ne quib		Busic Electrical E	ing incoming, Du		' 8					
Lecture 3 Hrs/week MSE ISE ESE Total Tutorial - 30 20 50 100 Practical - 30 20 50 100 Interaction - Credits: 3 100 This course intends to develop basics of ladder logic programming for PLC. 1 1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the applications of variable speed drives in industria industries. Course Outcomes (CO) with Bloom's Taxonomy Level CO1 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Appl CO2 Identify the use of various actuators in industrial automation. Appl CO4 Explore the use of various process Parame ters Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Introduction to process control, PID controller and tuning, various control configurations such as cascade control, and selective control. 6 III Introduction to various actuators used as flow control valves, Hydraulic and necultaction to various actuatore		Teaching	Scheme		Examinatio	on Scheme (Marks)						
Tutorial - 30 20 50 100 Practical - Nil Nil Imteraction - Imteraction - Imteraction - Imteraction - Imteraction - - Credits: 3 -<				MSE			Total					
Practical - Nil Interaction - Credits: 3 Interaction - Credits: 3 1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the foundation level know ledge of SCADA System. 3 It gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. Course Outcomes (CO) with Bloon's Taxonomy Level Course outcomes (CO) with G			-									
Interaction - Credits; 3 Interaction - Course Objectives 1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the foundation level knowledge of SCADA System. 3 It gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. Course Outcomes (CO) with Bloom's Taxonomy Level C01 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Apply C02 Identify the use of variable speed drives for Industrial Automation. Apply C03 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply C04 Explore the use of variable speed drives for Industrial Automation. Apply Measurement of Various Process Parameters Hourn Ameasurement of Various Process Control and Schor Industrial Automation of errors and calibration. 6 II Process Control and Various Controllers Hourn 6 III Introduction to process control, feed forward control, split range control, ratio control, override control and selective control. 6 III <th></th> <td></td> <td>-</td> <td></td> <td colspan="7"></td>			-									
Course Objectives 1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the foundation level knowledge of SCADA System. 3 It gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. COUSE OutComes (CO) with Bloom's Taxonomy Level CO1 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Apply CO2 Identify the use of various actuators in industrial automation. Apply CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply Module Module Contents Hour Measurement of Various Process Parameters Measurement, seed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteris			_		C							
1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the foundation level knowledge of SCADA System. 3 It gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. C01 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Understa C02 Identify the use of various actuators in industrial automation. Apply C03 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply C04 Explore the use of various Process Parameters Hour Measurement of Various Process Parameters Measurement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controller and tuning, various control configurations such as cascade control, feed forward control, split range control, averide control and selective control. 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IIII Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 VV SCADA for Industrial Automato												
1 This course intends to develop basics of ladder logic programming for PLC. 2 It provides the foundation level knowledge of SCADA System. 3 It gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. C01 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Understa C02 Identify the use of various actuators in industrial automation. Apply C03 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply C04 Explore the use of various Process Parameters Hour Measurement of Various Process Parameters Measurement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controller and tuning, various control configurations such as cascade control, feed forward control, split range control, averide control and selective control. 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IIII Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 VV SCADA for Industrial Automato				Course	Objectives							
2 It provides the foundation level knowledge of SCADA System. 3 It gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. Course Outcomes (CO) with Bloom's Taxonomy Level Course Outcomes (CO) with Bloom's Taxonomy Level Course Outcomes (CO) with Bloom's Taxonomy Level CO1 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Apply CO2 Identify the use of various actuators in industrial automation. Apply CO2 Identify the use of various actuators in industrial automation. Apply CO2 Identify the use of various actuators in industrial automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply Module Module Contents Hours Measurement of Quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controller and tuning, various control configurations such as cascade control, eventice control. 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, serv	1	This cou	rse intends to de			amming for PLC.						
3 If gives overview of various types of controller for closed loop control. 4 It provides the applications of variable speed drives in industries. Course Outcomes (CO) with Bloom's Taxonomy Level CO1 Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Understa CO2 Identify the use of various actuators in industrial automation. Appl CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Appl CO4 Explore the use of variable speed drives for Industrial Automation. Appl CO4 Explore the use of variable speed drives for Industrial Automation. Appl CO4 Explore the use of variable speed drives for Industrial Automation. Appl Module Module Contents Hours Measurement of Quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 VI <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
4 It provides the applications of variable speed drives in industries. Course Outcomes (CO) with Bloom's Taxonomy Level COI Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Understa CO2 Identify the use of various actuators in industrial automation. Apply CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply CO4 Explore the use of various actuators in industrial Automation. Apply CO4 Explore the use of various actuators for Industrial Automation. Apply Module Module Contents Hourn Measurement of Various Process Parameters Measurement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controllers 6 III Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 VI SCADA for Industrial Automaton 6 VI												
Course Outcomes (CO) with Bloom's Taxonomy Level COI Explain the working of various types of measuring instruments, controllers and actuators for implementation in industrial automation. Understa CO2 Identify the use of various actuators in industrial automation. Apply CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply Module Module Contents Hourn Measurement of Quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 Process Control and Various Controllers Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Actuators Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 VI <td< td=""><th>4</th><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4											
actuators for implementation in industrial automation.ApplCO2Identify the use of various actuators in industrial automation.ApplyCO3Apply the knowledge of PLC and SCADA for Industrial Automation.ApplyCO4Explore the use of variable speed drives for Industrial Automation.ApplyModuleModule ContentsHoursMeasurement of Quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration.6IIProcess Control and Various Controllers Introduction to process control, PID controller and tuning, various control configurations such as cascade control, deed forward control, split range control, ratio control, override control and selective control.6IVActuators Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics.6IVSCADA for Industrial Automaton Components of SCADA, systems, functions, classification of SCADA, networking and communication protocols.6VIVariable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives.61John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application6												
CO2 Identify the use of various actuators in industrial automation Apply CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply Module Module Contents Hour I Measurement of Various Process Parameters Hour Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 III Process Control and Various Controllers Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives 6 <th>CO1</th> <td>Explain actuator</td> <td colspan="8">Explain the working of various types of measuring instruments, controllers and</td>	CO1	Explain actuator	Explain the working of various types of measuring instruments, controllers and									
CO3 Apply the knowledge of PLC and SCADA for Industrial Automation. Apply CO4 Explore the use of variable speed drives for Industrial Automation. Apply Module Module Contents Hour Module speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. Process Control and Various Controllers 6 III Process Control and Various Controllers Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 IIII Actuators Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. PLC 6 IV PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 III John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition.	CO2											
CO4 Explore the use of variable speed drives for Industrial Automation. Appl Module Module Contents Hour Measurement of Various Process Parameters Measurement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controllers 6 Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Actuators 1 6 IIII Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton 6 VI Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 VI John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 6	CO3											
I Measurement of Various Process Parameters Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controllers Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Actuators Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 6	CO4	Explore	the use of varia	able speed drives for	r Industrial Aut	tomation.	Apply					
I Measurement of Various Process Parameters 6 I Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controllers 6 III Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Actuators 6 IIII Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA, networking and communication protocols. 6 VI Variable Speed Drives 6 VI Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & applicatio by PHI publication, Eastern Economic Edition. 6	Modu	ıle		Module	Contents		Hours					
I Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors and calibration. 6 II Process Control and Various Controllers 6 III Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Actuators 6 IIII Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 6	mout											
II Introduction to process control, PID controller and tuning, various control configurations such as cascade control, feed forward control, split range control, ratio control, override control and selective control. 6 III Actuators 6 III Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV PLC 6 Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton 6 VI Role of variable Speed Drives 6 VI Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 1	Ι	Meas	Measurement of quantities such as temperature, pressure, force, displacement, speed, flow, level, humidity, pH etc., signal conditioning, estimation of errors									
III Actuators Introduction to various actuators such as flow control valves, Hydraulic and pneumatic, servo motors, symbols and characteristics. 6 IV PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 Text Books 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application	II	Intro confi	Process Control and Various ControllersIntroduction to process control, PID controller and tuning, various controlconfigurations such as cascade control, feed forward control, split range									
IV Introduction to sequence control and relay ladder logic, basic PLC system, I/O modules, scan cycle, programming of timers, counters and I/O programming. 6 V SCADA for Industrial Automaton Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 1	III	Actu Intro	Actuators Introduction to various actuators such as flow control valves, Hydraulic and									
V Components of SCADA systems, functions, classification of SCADA, networking and communication protocols. 6 VI Variable Speed Drives 6 Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 Text Books 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition.	IV	Intro modu	PLC Introduction to sequence control and relay ladder logic, basic PLC system, I/O									
VI Role of variable speed drives in automation, DC drives, AC drives and synchronous motor drives applications of variable speed drives. 6 Text Books 1 John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application by PHI publication, Eastern Economic Edition. 6	V	Com netw	Components of SCADA systems, functions, classification of SCADA,									
1John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & applicationby PHI publication, Eastern Economic Edition.		Role	of variable sp	beed drives in auto	6							
1John W. Webb, Ronald A. Reis "Programmable logic controllers, principles & application1by PHI publication, Eastern Economic Edition.	VI	sync										
	VI	sync		Tev	t Books							
2 C. D. Johnson, " <i>Process control & instrumentation techniques</i> ". Pearson Education		John	W. Webb, Ron	ald A. Reis "Progr	ammable logic	controllers, principles &	applications"					

References								
1	George Stephanopoulos, "Chemical Process Control - An introduction to Theory and							
1	Practice", Prentice-Hall of India, 1st Edition 1984.							
2	"Fundamentals of Electrical Drives", G. K. Dubey, Narosa publication, 2nd edition.							
Useful Links								
1	https://nptel.ac.in/courses/108105063							
2	https://archive.nptel.ac.in/courses/108/106/108106022/							

CO-PO Mapping															
	Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		2													
CO2		2			2										
CO3						2								2	
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															
Each CO of the course must map to at least one PO.															

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISEshall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)