Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)

AY 2023-24

Course Information				
Programme	M.Tech.			
Class, Semester	First Year M. Tech.CSE Sem II			
Course Code	7OE509			
Course Name	Machine Learning in practice			
Desired Requisites: Basic mathematics and python programming				

Teaching Scheme		Examination Scheme (Marks)				
Lecture	3 Hrs/week	ISE	MSE	ESE	Total	
Tutorial	-	20	30	50	100	
Practical	-					
Interaction	-	Credits: 3				

	Course Objectives				
1	To introduce python and mathematical concepts required for machine learning				
2	To prepare data for machine learning				
3	To implement supervised and unsupervised learning algorithm				
	Course Outcomes (CO) with Bloom's Taxonomy Level				
CO1	Apply different data pre-processing techniques required for data preparation.	Apply			
CO2	Identify and implement different machine learning algorithms to solve real life	Analyze			
	problems.				
CO3	Evaluate and compare performance of the machine learning algorithms.	Evaluate			

Module	Module Contents	Hours			
I	Introduction to Machine Learning Introduction, Types of machine learning, Applications of Machine Learning, Python basics: basic constructs of python, pandas, NumPy, Matplotlib for data visualization				
II	Data pre-processing Data Cleaning: handling missing values, removing noise from data, handling categorical features, Feature selection and reduction, Data normalization, Train/test split, cross-validation	6			
III	Supervised Learning-I Linear regression, multiple regression, MSE, RMSE Classification using Naïve Bayes classifier, Decision tree classifier, KNN, logistic regression	8			
IV	Supervised Learning-II Ensemble models: tree-based algorithms, Bagging, Boosting, Stacking Model Performance Confusion matrices, accuracy, precision, recall, F1 score, Hyperparameter tuning, deployment	8			
V	Unsupervised Learning Clustering- K means clustering, HDBSCAN, Dimensionality reduction using PCA.	5			
VI	Reinforcement learning and Case study Introduction to reinforcement learning, Types, elements and applications of	6			

	Reinforcement learning, Case studies based on various applications of machine learning algorithms in real life.						
	rearing abortaine in rear me.						
	Text Books						
1	Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.						
2							
3							
	References						
1	Introduction to Machine Learning Edition 2, by Ethem Alpaydin.						
2							
3							
Useful Links							
1	NPTEL 'Introduction to Machine learning' -Link						
2							

CO-PO Mapping						
	Programme Outcomes (PO)					
	1	2	3	4	5	6
CO1	2	2				
CO2				3		
CO3	1		1			2

The strength of mapping is to be written as 1,2,3; Where, 1: Low, 2: Medium, 3: High. Each CO of the course must map to at least one PO.

Assessment (for Theory Course)

The assessment is based on 1 in-semester examinations in the form of ISE of 20 marks and MSE of 30 Marks. Also, there is End-Sem examination (ESE) of 50 marks. MSE shall be typically on modules 1 2 and 3, ISE based typically on all the modules and ESE shall be on all modules with nearly 30% weightage on first 3 modules and 70% weightage on modules 4, 5, 6.

A	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course					
Bloo	m's Taxonomy Level	ISE	MSE	ESE	Total	
1	Remember					
2	Understand					
3	Apply		15	20	35	
4	Analyse		15	20	35	
5	Evaluate	20		10	30	
6	Create					
	Total	20	30	50	100	