Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)								
	AY 2022-23							
Course Information								
Programme		M.Tech.						
Class, Semester		First Year M	First Year M. Tech.CSE Sem II					
Course Code		6OE509	6OE509					
Course Name		Machine Lea	rning in practice					
Desired Requisites	5:	Basic mather	natics and python p	rogramming				
		·						
Teaching	Scheme		Examination Scheme (Marks)					
Lecture	3 Hrs/week	ISE	MSE	ESE	Total			
Tutorial	-	20	30	50	100			

	Course Objectives						
1	1 To introduce python and mathematical concepts required for machine learning						
2	2 To prepare data for machine learning						
3	3 To implement supervised and unsupervised learning algorithm						
	Course Outcomes (CO) with Bloom's Taxonomy Level						
CO1	Apply different data pre-processing techniques required for data preparation.	Apply					
CO2	Identify and implement different machine learning algorithms to solve real life problems.	Analyze					
CO3	Evaluate and compare performance of the machine learning algorithms.	Evaluate					

Credits: 3

Practical

Interaction

-

-

Module	Module Contents	Hours			
Ι	Introduction to Machine Learning Introduction, Types of machine learning, Applications of Machine Learning,	6			
1	Python basics: basic constructs of python, pandas, NumPy, Matplotlib for data visualization	6			
	Data pre-processing				
II	Data Cleaning: handling missing values, removing noise from data, handling categorical features, Feature selection and reduction, Data normalization,	6			
	Train/test split, cross-validation Supervised Learning-I				
	Linear regression, multiple regression, MSE, RMSE				
III	Classification using Naïve Bayes classifier, Decision tree classifier, KNN, logistic regression	8			
	Supervised Learning-II Ensemble models: tree-based algorithms, Bagging,				
	Boosting, Stacking				
IV	Model Performance	8			
	Confusion matrices, accuracy, precision, recall, F1 score, Hyperparameter				
	tuning, deployment				
	Unsupervised Learning				
V	Clustering- K means clustering, HDBSCAN, Dimensionality reduction using PCA.	5			
	Reinforcement learning and Case study				
VI	Introduction to reinforcement learning, Types, elements and applications of				
11	Reinforcement learning, Case studies based on various applications of machine				
	learning algorithms in real life.				
	Text Books				

1	1 Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.						
2	2 Introduction to Machine Learning Edition 2, by Ethem Alpaydin.						
3							
	References						
1							
2							
3	3						
	Useful Links						

1 NPTEL 'Introduction to Machine learning' - <u>Link</u>								
2	2							
CO-PO Mapping								
	Programme Outcomes (PO)							
		1	2	3	4	5	6	
CO	1 2	2	2					
CO2	2				3			
CO3	3	1		1			2	
The stren	gth of mapping	is to be w	ritten as 1,2,3;	Where, 1: Lov	w, 2: Medium, 3:	High.	<u>.</u>	

Each CO of the course must map to at least one PO.

Assessment (for Theory Course)

The assessment is based on 1 in-semester examinations in the form of ISE of 20 marks and MSE of 30 Marks. Also, there is End-Sem examination (ESE) of 50 marks. MSE shall be typically on modules 1 2 and 3, ISE based typically on all the modules and ESE shall be on all modules with nearly 30% weightage on first 3 modules and 70% weightage on modules 4, 5, 6.

Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
Bloo	m's Taxonomy Level	ISE	MSE	ESE	Total		
1	Remember						
2	Understand						
3	Apply		15	20	35		
4	Analyse		15	20	35		
5	Evaluate	20		10	30		
6	Create						
	Total	20	30	50	100		

Walshand Callage of Engineering Sangli							
Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)							
			1	X <i>iaea Autonomous In</i> XY 2022-23			
	Course Information						
Programme M.Tech. (Computer science and engineering)							
Class,		ton	First Year M. Tec		gineering)		
· · ·			6CO575	n., sem n			
Desired Requisites: Encryption and decryption techniques.							
Teaching Scheme Examination Scheme (Marks)							
Lectur	-	-	LA1	LA2	ESE	Total	
Tutori		-	30	30	40	100	
Practi		2 Hrs/Week					
Intera	ction	-		Cr	edits: 1		
			Car				
	4 - 1 - 4			irse Objectives	- C		
1	theor	у	l encryption techni				
			bes and message d			ithms including secret	
3	key er	ptography, has	nes and message u	igests, and public i			
5		Соц	rse Outcomes (CO)) with Bloom's T	axonomy Level		
At the	end of		students will be ab		uxonomy Lever		
			ption techniques			Apply	
			e different cryptogr	aphic algorithms		Evaluate	
CO3							
			Exper	iment Guidelines			
Experi	iment	list:					
1.		nplement Huf	ē				
2.		1	hmetic Coding.				
3.		nplement μ la					
4.			dimension DCT				
5.			dimension DCT	ור			
6.		1	nese Remainder T				
7.		1	ser Cipher Algori	thm			
8.		nplement RSA	Ū.	1			
9.	1 0 1r	nplement Diff	ie-Hellman Key	exchange			
				Text Books			
1	Data (Compression . Da	vid Salomon , Spring		dition.		
2	Introd	uction to Data Co	ompression, Khalid Sa	ayood, Morgan Kaufr	nann Series, 3rd Edit	cion	
3	Crypto	ography and Netv	vork Security, William	n Stallings, Pearson E	Education Asia Public	ation, 5th Edition.	
	 Cryptography and Network Security, William Stallings, Pearson Education Asia Publication, 5th Edition. Cryptography and Network Security, Behrouz Forouzan, McGraw-Hill, 1st Edition. 						

	References						
1	1 Cryptography and Network Security, Behrouz Forouzan, McGraw-Hill, 1st Edition.						
2	The Data Compression Book, Mark Nelson, BPB publication, 2nd Edition						
3	Applied Cryptography, Bruce Schnerer, John Willey & Sons Inc. Publication, 2nd Edition						
	Useful links						
1	NPTEL lectures						

	CO-PO Mapping								
		Programme Outcomes (PO)							
	1	1 2 3 4 5 6							
CO1			2			2			
CO2				2	2				
The strength of mapping is to be written as 1,2,3; Here, 1: Low, 2: Medium, 3: High									
Each CO	of the course mu	ist map to at leas	st one PO.						

	Assessment					
	here are three components of lab assessment, LA1, LA2 and Lab ESE.					
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.		
Assessment Based on Conducted by Typical Schedu			Typical Schedule	Marks		
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30		
LAI	attendance, journal Faculty		Marks Submission at the end of Week 6	50		
X 4 0	Lab activities,	Lab Course	During Week 7 to Week 12			

LA2	Lab activities,	Lab Course	During Week / 10 Week 12	30				
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30				
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40				
ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40				
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,					
considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab								
activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,								
•	1 (1 '/ 11 /	• • • • • • • • • • • • • • • • • • • •						

programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks)						
Bloom's Taxonomy Level	LA1	LA2	ESE	Total		
Remember						
Understand						
Apply	20	10	5	35		
Analyze	10	10	10	30		
Evaluate		10	10	20		
Create			15	15		
Total	30	30	40	100		

Walchand College of Engineering, Sangli				
(Government Aided Autonomous Institute)				
AY 2022-23				
Course Information				
M.Tech. (Computer science and engineering)				
First Year M. Tech., Sem II				
6CO574				
Course Name Natural Language processing Lab				
Desired Requisites: NLP concepts				

Teachin	g Scheme		Examination	n Scheme (Marks)	l .
Lecture	-	LA1	LA2	ESE	Total
Tutorial	-	30	30	40	100
Practical	2 Hrs/Week		•	·	
Interaction	-	Credits: 1			

	Course Objectives				
1	To introduce the students with the basics of NLP.				
2	empower students for developing advanced NLP tools and solving practical problems in the field				
3					
Course Outcomes (CO) with Bloom's Taxonomy Level					

At the	At the end of the course, the students will be able to,				
CO1	assistants that are used in various business fields/areas	Apply			
CO2	Develop the knowledge of NLP	Create			
CO3					

Experiment Guidelines

Experiment list:

- 1. Preprocessing of text (Tokenization, Filtration, Script Validation, Stop Word Removal, Stemming)
- 2. Morphological Analysis
- 3. N-gram model
- 4. POS tagging
- 5. Chunking
- 6. Named Entity Recognition
- 7. Virtual Lab on Word Generator
- 8. Mini Project based on NLP Application

	Text Books				
	Practical Natural Language Processing: A Comprehensive Guide to Building Real-World				
1	NLP Systems by Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit				
	Surana (Published on June 17, 2020)				
2	Natural Language Processing with PyTorch: Build Intelligent Language Applications				
² Using Deep Learning by Delip Rao, Brian McMahan (Published on February 19, 2019)					
References					

1	Natural Language Processing in Action: Understanding, analyzing, and generating text with Python by Hobson Lane, Hannes Hapke, Cole Howard (Published on April 14, 2019)			
2				
3				
	Useful links			
1	http://nlp-iiith.vlabs.ac.in/			

CO-PO Mapping						
	Programme Outcomes (PO)					
	1	2	3	4	5	6
CO1			2			2
CO2				2	2	

The strength of mapping is to be written as 1,2,3; Here, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment						
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.					
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.		
Assessment	Based on	Conducted by	Typical Schedule	Marks		
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30		
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50		
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30		
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50		
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40		
LSE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40		
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,			
0	considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab					
activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,						
programming and other suitable activities, as per the nature and requirement of the lab course. The						
experimental	lab shall have typicall	y 8-10 experimen	ts.			

Assessment P	Assessment Plan based on Bloom's Taxonomy Level (Marks)				
Bloom's Taxonomy Level	LA1	LA2	ESE	Total	
Remember					
Understand					
Apply	20	10	5	35	
Analyze	10	10	10	30	
Evaluate		10	10	20	
Create			15	15	
Total	30	30	40	100	

Walchand College of Engineering, Sangli					
(Government Aided Autonomous Institute)					
AY 2022-23					
Course Information					
M.Tech. (Computer science and engineering)					
First Year M. Tech., Sem II					
6CO579					
Course Name ADVANCED DAATABASE SYSTEM LAB					
Desired Requisites: DATABASE MANAGEMENT SYSTEM					

Teachin	g Scheme		Examination	n Scheme (Marks)			
Lecture	-	LA1	LA1 LA2 ESE Total				
Tutorial	-	30	30	40	100		
Practical	2 Hrs/Week						
Interaction	-	Credits: 1					

	Course Objectives					
1	1 To explore the features of a Database Management Systems					
2	2 To interface a database with front end tools					
3	3 To understand the internals of a database system					
	Course Outcomes (CO) with Bloom's Taxonomy Level					
At the	end of the course, the students will be able to,					
CO1	CO1 Ability to use databases for building web applications. Apply					
CO2Gaining knowledge about the internals of a database system.Create						
CO3						

Mini Project Guidelines

Course Contents:

- 1. Basic SQL
- 2. Intermediate SQL
- 3. Advanced SQL
- 4. ER Modeling
- 5. Database Design and Normalization
- 6. Accessing Databases from Programs using JDBC
- 7. Building Web Applications using PHP & MySQL
- 8. Indexing and Query Processing
- 9. Query Evaluation Plans
- 10. Concurrency and Transactions
- 11. Big Data Analytics using Hadoop

	Text Books						
1	1.	Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", 6 th edition, Tata McGraw Hill, 2011					

2	
	References
1	 Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", 4th Edition, Pearson/Addision wesley, 2007
2	
3	

CO-PO Mapping							
			Programme O	utcomes (PO)			
	1	2	3	4	5	6	
CO1			2			2	
CO2				2	2		
The stren	gth of mapping i	s to be written as	s 1,2,3; Here, 1:	Low, 2: Mediu	m, 3: High		

Each CO of the course must map to at least one PO.

Assessment								
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.							
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.				
Assessment Based on Conducted by Typical Schedule Mark								
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30				
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50				
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30				
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50				
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40				
ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40				
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,					

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks)							
Bloom's Taxonomy Level LA1 LA2 ESE Total							
Remember							
Understand							
Apply	20	10	5	35			
Analyze	10	10	10	30			
Evaluate		10	10	20			
Create			15	15			
Total	30	30	40	100			

Walchand College of Engineering, Sangli						
(Government Aided Autonomous Institute)						
AY 2022-23						
Course Information						
M.Tech. (Computer science and engineering)						
First Year M. Tech., Sem II						
6CO578						
Network Security Lab						
Basics of computer network						
-						

Teaching Scheme		Examination Scheme (Marks)					
Lecture	-	LA1	LA2	ESE	Total		
Tutorial	-	30	30	40	100		
Practical	2 Hrs/Week						
Interaction	-	Credits: 1					

	Course Objectives					
1	implies that unauthorized individuals mustn't have any sort of access to the info.					
2	Integrity for data means changes made to data are done only by authorized individu	als/systems.				
3	Availability: this is applicable to systems and to data.					
Course Outcomes (CO) with Bloom's Taxonomy Level						
At the	e end of the course, the students will be able to,					
CO1	Understanding security architectures, protocols and services in both wired and	UNDERSTA				
	wireless networks	ND				
CO2	Understand the role of security protocols in securing networks	APPLY				
CO3	Discover, analyze and identify security issues in the network.	APPLY				
CO4	Evaluate the use of an IDS and IPS in a working environment	ANALYZE				
CO5	Apply security mechanisms, security policies, security components (such as protection domains and firewalls), port security and protection to secure networks	CREATE				

Mini Project Guidelines

Course Contents:

1. Make a Detailed Report on Network Security Threats covering Structured, Unstructured, Internal and External Threats

2. Perform the following Scan using Wireshark and analyze your results

(a)Analyze TCP session

(b) Perform and analyze these scans

(i) Start a Wireshark capture. Open a Windows-> command window and perform a Host Scan (using ICMP packets) on a neighbours machine using nmap –sP [neighbors ip address]. Stop the capture and filter the traffic for ARP and ICMP packets.(ii)Start a new Wireshark capture, and then perform a host scan (ICMP scan) on a system out with the subnet, such as nmap –sP scanme.nmap.org.(Stop the capture and filter the traffic for ARP and ICMP packets and Compare

with previous results.

(iii) Start a new Wireshark capture, and then perform a complete Port Scan (in this case a TCP SYN scan) and an Operating System Fingerprint on a neighbours machine using nmap -O [neighbours ip address]. The -O option should provide the OS running on the scanned machine.Stop the capture and filter for source address == your machines address if necessary.

3. To Analysis Network using Wireshark for

(a)Traffic Monitoring (TCP slow down and HTTP slow down)

(b) Packet Sniffing

4. Explore, execute and analysis traffic using TCP Dump and Net discover tools

Software

5. To explore Shodan for (a) locating Boats and Ship Locations (b) Searching and capturing Live Cameras. (b) To Write a small NSE Script

6. To spoof IP address of your own system using Kali Linux

7.To sniff traffic using ARP Spoofing

8. To perform man in middle attack using DNS spoofing

9.To perform UDP session hijacking using Scapy

10.To perform TCP session hijacking using Shijack.

11. Write and execute commands

- To view routing Table
- To view network statistics of a network
- To view all routes
- To update/modify/add/delete routes in a routing table
- 12. To Perform HTTP Session Hijacking through Cookie stealing
- 13. Configuring IPSec VPN Tunnel Mode using Packet Tracer

14.Decryption SSI/TLS Traffic using Wireshark

15. To Configure AAA (TACACS+) on Packet Tracer for User Authentication

	16. User account Using TACACS AND RADIUS ON PACKET TRACER
	17. Configure Numbered ACL for a given topology.
	18. Perform Wireless Hacking using aerodumpng
	Text Books
1	B William Stallings, " Network Security Essentials (Applications and Standards)", Pearson Education., 5th Edition,2011
2	Ryan Russell, "Hack Proofing your network ", Wiley,2nd Edition,2002
	References
1	Karen Scarf one, "Guide to Intrusion and prevention System", NIST Special Publication, 2nd Edition, 2007
2	
	Usefull Links
1	https://nptel.ac.in/syllabus/syllabus.php?subjectId=106105031
2	https://www.cybrary.it/course/security-for-beginners/
3	https://www.udemy.com/topic/Network-Security/
4	https://www.coursera.org/courses?query=network%20security
5	https://www.edx.org/learn/network-security

			CO-PO Mapping Programme Outcomes (PO)						
	1	2	3	4	5	6			
CO1			2			2			
CO2				2	2				
CO3	1			2					
CO4		2			1				
CO5			2	1		2			

The strength of mapping is to be written as 1,2,3; Here, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment							
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.						
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.			
AssessmentBased onConducted byTypical ScheduleMark							
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50			
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30			
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50			

ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40					
ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40					
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,									
considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab									
activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,									
programming and other suitable activities, as per the nature and requirement of the lab course. The									
experimental lab shall have typically 8-10 experiments.									

Assessment Pl	Assessment Plan based on Bloom's Taxonomy Level (Marks)										
Bloom's Taxonomy Level	LA1	LA2	ESE	Total							
Remember											
Understand											
Apply	20	10	5	35							
Analyze	10	10	10	30							
Evaluate		10	10	20							
Create			15	15							
Total	30	30	40	100							

	Walchand College of Engineering, Sangli									
		••		Aided Autonomous In						
			1	AY 2022-23	isilinic)					
				rse Information						
Progra	ommo			ter science and eng	ringering)					
Class,		stor	First Year M. Tec		gineering)					
Class, Cours			6C0577	n., sem n						
			Machine Learnin	g lad						
Desire	d Req	uisites:	Data Science							
Те	eachin	g Scheme		Examination	Scheme (Marks)					
Lectur	re	-	LA1	LA2	ESE	Total				
Tutori	ial	-	30	30	40	100				
Practi	cal	2 Hrs/Week								
Intera	ction	-		Cr	edits: 1					
				irse Objectives						
1			• •		o different applicat					
2		llustrate a range nesses.	e of machine learni	ng algorithms alon	g with their strength	is and				
3			arning algorithms t	o solve problems (of moderate comple	vitv				
U	10 40			D) with Bloom's T	-					
At the end of the course, the students will be able to,										
CO1	· •	ement a range o veaknesses.	f machine learning	algorithms along	with their strengths	Apply				
CO2	Apply Learn		ing algorithms to s	solve typical proble	ems in Machine	Apply				
CO3	Analy	ze various mac	hine learning tools			Analyze				
			Mini F	Project Guidelines	1					
Course	e Cont	tents:								
			sing Machine Le							
1.	-		egression using p	•						
2.	-		•	classify the Engl						
	-			and extraction al	gorithm.					
	-		logistic regressio	on.						
5.			KNN algorithm.							
	-	ementation of		1						
	-		Naïve Bayesian							
	-		Bayesian networ	К.						
		•	n EM algorithm.	these						
			n k-Means algori							
	-		evaluation technic	-						
12	. impl	ementation of	back propagatior	1 IOF AININ.						
				Text Books						
1	Т. На	stie, R. Tibshira			istical Learning", 2e	, 2008				
2	2. Ch	ristopher Bisho	p, Pattern Recogni	tion and Machine	Learning, Springer 2	:016				

	References								
1	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "Introduction to								
1	Statistical Learning", Springer, 2013								
2	Richard Duda, Peter Hart, David Stork, "Pattern Classification", John Wiley & Sons,								
	2e,2001								
2	NPTEL online course by Prof. Balaraman Ravindran on "Introduction to Machine								
5	Learning"								
	· •								

CO-PO Mapping											
Programme Outcomes (PO)											
1 2 3 4 5 6											
2		2	1								
	1	1	2								
		2	3	2	2						
	1 2	1 2 2 1	**								

The strength of mapping is to be written as 1,2,3; Here, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment										
There are three components of lab assessment, LA1, LA2 and Lab ESE.										
IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.										
Assessment Based on Conducted by Typical Schedule Mark										
LA1	Lab activities, Lab Course During Week 1 to W		During Week 1 to Week 6	30						
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50						
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30						
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50						
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40						
ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40						
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,							
considering a	26-week semester. Th	ne actual schedule	shall be as per academic calendar. Lab							

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks)										
Bloom's Taxonomy Level	LA1	LA2	ESE	Total						
Remember										
Understand										
Apply	20	10	5	35						
Analyze	10	10	10	30						
Evaluate		10	10	20						
Create			15	15						
Total	30	30	40	100						

				Aided Autonomous Institute AY 2022-23						
			Cou	urse Information						
Progr	amme		M.Tech. (Comp	outer science and engineer	ring)					
	Class, Semester First Year M.Tech., Sem II									
	e Cod		6CO536							
Course Name Advanced Database System										
Desire	ed Req	uisites:	Database System							
Т	eachir	g Scheme		Examination Sch	eme (Marks)					
Lectu		3 Hrs/week	ISE	MSE	ESE	Total				
Tutor	-		20	30	50	100				
Practi			20	Nil	50	100				
Intera				Credits	• 3					
mera		-		Creatis	• 5					
			Co	ourse Objectives						
				cepts in databases both	in terms of usage an	d				
1	imp	lementation								
2				l requirement and oper	ations that the analys	st needed to				
			nd implement the							
3	To io			tion for literature review						
A1	1			CO) with Bloom's Taxon	omy Level					
	1		students will be al			TT. 1				
CO1			tabase systems and	any specified domain acc	onding to wall Imourn	Understan				
CO2	desig			retrieval performance v		Apply				
CO3	10		eval queries in SO	L and the abstract query 1	anguages	Create				
000	1 0111			L'una une abbitact query i	unguuges	Citute				
Modu	ıle		Mo	odule Contents		Hours				
I		ormal review o		se and FDs Implication, C	losure, its correctness	6				
II				synthesis approaches, Re	eview of SQL99, Basics	6				
			sing, external sorti							
IIIProcessing of joins, materialized vs. pipelined processing, query transformation rules, DB transactions, ACID properties, interleaved executions, schedules, serialisability										
		·	of interleaved execution, Locking and management of locks, 2PL, nultiple level granularity, CC on B+ trees, Optimistic CC							
IV						7				

VI	data		esign &			-				-	-	ct Orier n datab		7	
	Text Books														
1	R. Ra	R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw Hill, 2004													
2	A. Sill	A. Silberschatz, H. Korth, S. Sudarshan, Database system concepts, 5/e, McGraw Hill, 2008													
References															
1															
2															
						Us	eful L								
1							NPTE	EL Lec	tures						
						CO-]	PO Ma	apping	5						
				P	rograi	nme (Outcon	nes (PC)					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2		1												
CO2					2	2									
CO3				2											
	The	strengt	h of m	apping	, is to b	e writt	en as 1	,2,3; V	Vhere,	1:Low	, 2:Me	dium, 3	:High		
			Ea	ach CO) of the	e cours	e must	map to	o at lea	st one	PO.				

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)											
Bloom's Taxonomy Level	ISE	MSE	ESE	Total							
Remember											
Understand											
Apply	15			15							
Analyze	15	10		25							
Evaluate		10	20	30							
Create		10	20	30							
Total Marks	30	30	40	100							

			·	Aided Autonomous Instit. AY 2022-23				
D			1	Irse Information	· 、			
Progra		4	· · ·	outer science and engine	eering)			
Class,			First Year M.Teo	ch., Sem II				
Cours		-	6CO535					
Course Name Network Security Desired Requisites: Computer Network								
Desire	d Req	uisites:	Computer Netwo	ork				
				— • • • •				
		g Scheme		Examination Sc	, ,			
Lectu		3 Hrs/week	ISE	MSE	ESE	Total		
Tutor		-	20	30	50	100		
Practi		-		Ni				
Intera	ction	-		Credi	ts: 3			
				ourse Objectives				
1		erstand security						
2			•	e concepts of network	o 1			
3	lo ei			tion of various networl				
At the	end of		students will be at	O) with Bloom's Taxe	Dhomy Level			
	1				solve problems related to	Apply		
CO1	netw					- PP-J		
CO2	Analy	/ze security of r	network protocols	and systems		Analyze		
CO3				•	model to prevent, detect	Create		
005	and r	ecover from at	tack					
Modu	le		Μ	odule Contents		Hours		
Ι	N		network security ry, Security Attack	s, Services and Mecha	anisms, Network Security,	7		
II	S	ymmetric Ciphe ubstitution &Ti iphers, RC4		niques, Block Cipher,	DES, Triple DES, Stream	6		
III	N		oles of Public Key	Cryptosystems, RSA A Key Exchange, Digital Si	lgorithm, Key Distribution ignatures	7		
IV Authentication Requirements, Message Authentication Codes, Hashes, MD5 & SHA, User Authentication: Password, Certificate based & Biometric Authentication, Kerberos								
User Authentication: Password, Certificate based & Biometric Authentication, Kerberos Network Security V Firewalls, IP Security, VPN, Intrusion Detection, Web Security, SSL, TLS								

VI	Conr traffi	Wireless network security Connecting to WEP/WPA PSK secured networks, monitoring and divert traffic Expected outcome: knowledge of a security level attainable networks													6
	Tayt Baaka														
Text Books															
2															
	References														
1															
2															
	1														
						Us	eful Li	inks							
1								EL Lec							
							PO Ma								
				P	rogra	mme C	Jutcon							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											2	2	
CO2	3	3											3	2	
CO3	3	2											3	1	
	The	strengt					ten as 1 e must					dium, 3	:High		

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)										
Bloom's Taxonomy Level	ISE	MSE	ESE	Total						
Remember	5		5	10						
Understand	5	5	5	15						
Apply	5	5	10	20						
Analyze	5		10	15						
Evaluate		10	5	15						
Create		10	15	25						
Total Marks	20	30	50	100						

			A	AY 2022-23			
			Cou	rse Information			
Progra	amme		M.Tech. (Compu	iter science and engine	eering)		
Class,	Semes	ster	First Year M. Tech	h., Sem II			
Cours	e Cod	e	6CO534				
Cours	e Nam	e	Machine Learnin	g			
Desire	d Req	uisites:	Data Science				
Т	achin	g Scheme		Examination Sci	heme (Marks)		
Lectur		3 Hrs/week	ISE	MSE	ESE ESE	Total	
Tutori	-		20	30	50	100	
Practi		_	20	Ni			
Intera		_		Credit			
		<u> </u>	1				
			Cou	ırse Objectives			
1	To fo	rmulate machir		ns corresponding to di	fferent applications.		
I							
2	weak	nesses.		ng algorithms along wi			
3	То ар	<u>· · ·</u>		o solve problems of m	· · ·		
A 4 4 h a				D) with Bloom's Taxo	onomy Level		
		,	students will be abl	g algorithms along with	h their strengths	Apply	
CO1	-	veaknesses.		g argorithing along with	i then strengths		
CO2	app Learr	•	ning algorithms to s	solve typical problems	in Machine	Apply	
CO3		•	hine learning tools			Analyze	
Modu	le		Mo	odule Contents		Hours	
Ι			on Theory - Regres ivariate Regression	sion, Classification, B	ias Variance, Linear	4	
Π	Li	near Classificat	ion, Logistic Regres	sion, Support Vector N	Machines	4	
III	В	ackpropagation	, Initialization, Trai	ly Models, Perceptron ning & Validation, Par Trees, Regression Tree	ameter Estimation - MLE,	5	
IV		ootstrapping & latrix, F1 score,		Class Evaluation Meas	ures, Confusion	4	
V		-	ans, HDBSCAN, H Density-based Clus	lierarchical Clustering, stering	Birch Algorithm,	6	
	VIHyper-parameter tuning, Deployment of Machine Learning models, introduction to deep learning						

1	Jason 2015	Bell, "	Machi	ne Lea	rning H	lands-(On for	Develo	pers a	nd Tecl	hnical I	Profess	ionals	" Wile	У
2	Tom	M. Mit	chell "I	Machir	ne Lear	ning" I	MGH								
3	Stepł	nen Ma	rsland	, Taylo	r & Fra	ncis "N	/lachin	e Learı	ning: A	n Algoi	rithmic	Perspe	ective'	' (CRC)	
4	Trevo	or Hasti	ie, Rob	ert Tib	shiran	i, Jeron	ne H. F	riedma	an "The	e Eleme	ents of	Statist	ical Le	arning	
						R	eferen	ces							
1		am Wha			e Learr	ning M	ethods	in the	Enviro	nment	al Scie	nces, N	leural	Netwo	orks"
2	Richard O Duda, Peter E. Hart and David G. Stork, John "Pattern classification" Wiley & Sons Inc., 2001														
3	Chris	Bishop) "Neui	al Net	works	for Pat	tern Re	ecognit	tion" C	xford l	Jnivers	sity Pre	ss, 199	95	
						Us	eful L	inks							
1	NPTE	L Video	os of 'lı	ntrodu	ction t				' Cours	e: <u>Link</u>					
						CO-I	PO Ma	pping							
				P	rogra	mme ()utcon	nes (PO)					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2		2	1											
CO2		1	1	2											
CO3			2	3	2	2									
	The	strengt	h of m	apping	is to b	e writt	en as 1	.2.3: W	Vhere.	1:Low.	2:Med	lium. 3	:High		

Assessment Plan based on	Bloom's Ta	xonomy Level (Marks) (For la	b Courses)
Bloom's Taxonomy Level	ISE	MSE	ESE	Total
Remember				
Understand				
Apply	20	10	30	60
Analyze		10	30	40
Evaluate				
Create				
Total Marks	20	20	60	100

				ege of Engineeri Aided Autonomous Inst	0, 0					
				AY 2022-23						
			Cou	irse Information						
Progra	amme		M.Tech. (Comp	uter science and engi	neering)					
Class,	Semes	ster	First Year M. Teo	:h., Sem II						
Cours	e Code	9	6CO533							
Cours	e Nam	e	Theory and Appl	ications of Remote Se	ensing & GIS					
Desire	d Req	uisites:	Fundamentals of	f Image processing						
Т	eachin	g Scheme		Examination S	Scheme (Marks)					
Lectu		3 Hrs/week	ISE	MSE	ESE	Total				
Tutori	-	-	20							
Practi	cal	_		1	Vil					
Intera	ction	_		Cree	lits: 3					
			1							
			Co	urse Objectives						
1	To im	part knowledg	e of the fundamer	tals of Remote Sensi	ng (RS) and geographical	information				
1	syste	ms (GIS)								
2	-			nd Data Products in F						
3	To ac		-	applications of RS and						
A 4 4 h a	and of			O) with Bloom's Ta	xonomy Level					
$\frac{\text{At the}}{\text{CO1}}$	1		students will be al	ital concepts in RS an	d CIS	Understar				
				•	strate GIS data and GIS					
CO2		base managem				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
CO3				Products of RS and GI	S	Analyse				
CO4	Selec	t and Verify RS	and GIS data and	data products to de	sign solution for various	Evaluate				
04	inter	disciplinary pro	blems							
Modu				dule Contents		Hours				
Ι	In Sj th Se	troduction, Rep pectrum and its le Earth's Surf ensors and Plat	oundation of Rem note Sensing Syste Characteristics, En ace, Resolution in form, Earth Observ d Processing, Remo	4						
II	Sa In In In	atellite Image aterpretation Pro- nage processing	Interpretation an ocedure and Eleme g and Image Analys nent, Spatial Filter	d Processing nts, Interpretation stra	ategies and keys, Digital fication and Restoration,	5				
III	A La	pplications of and use Land C	Remote Sensing over Mapping, Cro	op Inventory, Ground ster Management.	l Water Mapping, Urban	5				

IV	Intro Imag	ge Proc	n, Geo essing	graphic	and G	JIŜ, Va	rious (GIS pa	ckages	and th	ce betw eir sali			4	
V	GIS [Data ty Data, R	aster a		ctor da	ta, Ras	ster to	Vecto	r conve	ersion,		cing of e Sens		5	
VI	Meas Buff	sureme ering a	nts in nd Nei		engths, 100d Fu	Perim inction	eters, a 1s, Maj	and Are	lay, Sp		Reclass	sification,	on,	4	
								_							
1	Char	dra A		Cash	SV "		ext Bo			Naraci		hing	01160	2009	
1								-				shing H			
2			0	, A.K.W . 20012		icepts	and Ie	ecnniqu	Jes of G	Jeogra	pnicai	Inform	ation	System	Γ,
							•								
		·			"-		eferen								
1	1	and <i>,</i> T. dition.		Kieffe	r, "Ren	note Se	ensing	and Im	nage In	terpre	tation"	, John \	Wiley	and So	ns,
2	Chan	g, K, "lı	ntrodu	ction to	o Geog	raphic	al Syst	ems", ⁻	Tata M	cGraw	-Hill, 41	th Editi	on. 20	010	
	_						eful L								
1				el.ac.ir							<u>8</u>				
1	<u>https</u>	://npte	el.ac.in	<u>/noc/c</u>	ourses,										
								pping							
				P	rograi		Outcon	nes (PO						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			2												
CO2			2												
CO3	2			2											
CO4	3			2		2									
	The	strengt		apping ach CO								lium, 3	:High	1	

Assessment Plan based o	n Bloom's Ta	xonomy Level ((Marks) (For la	b Courses)
Bloom's Taxonomy Level	ISE	MSE	ESE	Total
Remember				
Understand	10	5	15	30
Apply	5	5	20	30
Analyze	5	5	15	25
Evaluate		5	10	15
Create				
Total Marks	20	20	60	100

				lege of Engineering, Sa Aided Autonomous Instit	0				
				AY 2022-23	,				
			Cou	rse Information					
Progra	amme		M.Tech. (Comp	uter science and enginee	ering)				
Class,		ster	First Year M.Tec	v					
Cours			6CO532						
Cours	e Nam	e	Data Encryption	and Compression					
Desire	d Req	uisites:		L					
Т	eachin	g Scheme		Examination Sch	eme (Marks)				
Lectur		3 Hrs/week	ISE	MSE	ESE	Total			
Tutori	-		20	30	50	100			
Practi		_	Nil						
Intera		-		Credits	:: 3				
		I	1						
			Co	urse Objectives					
1	1	evelop a researc rch methods.	h orientation amor	ng the students and to ac	quaint them with fundame	entals of			
2			<u>v</u>	framework of research p	*				
3				ion for literature review					
4	1	-	-	ical dimensions of cond	ucting applied research.				
5	To de		nding about patent		T 1				
At the	and of		students will be ab	O) with Bloom's Taxor	iomy Level				
CO1	1		hods to solve resea			Apply			
CO2				ctive engineering domai	n.	Apply			
CO3				iques for a research prob		Analyze			
CO4	1		ellectual Property F			Apply			
Modu	le		Μ	odule Contents		Hours			
	Ir	troduction to D	ata Compression						
Ι	S A	chemes, LZ, Lo daptive Huffma	ssy CompressionS	Coding, Statstical Mode hannon – Fano Algorith ies in Huffman Coding, ression	m, Huffman Algorithm,	4			
II	A		igital Video, MPE	G – 2, H – 261 Encoder L-Law Companding, MP		5			
III	S			cks, Techniques, Symmo am and Block Cipher, D		5			
IV	N	etwork Security	y Email, PGP, S/M	IME, Intrusion Detectio	n System	4			

	Secu	Securi re Elec eros, X	tronic	Transa	actions					0		s, TLS,			
v	Loss codir infor	ng, Mat	mpress hemati theory	sion, Lo cal Pre , Mode	ossy Co liminar ls: Phy	ries for sical m	Loss-le odels,	ess con Probab	pressionility mo	on: A bi odels, N	rief inti Aarkov	odeling coductio models	on to		5
VI	Mini Enco Appl	ding pr	ariance ocedur s of Ho	e Huffm re, Deco offman	nan cod oding p	les, Ada procedu	re. Gol	omb co	odes, R	ice cod	es, Tun	ocedure stall co pression	des,		4
						Т	ext Bo	oks							
1															
2															
	1					R	eferen	ices							
1															
2															
	1														
						Us	eful L	inks							
1								EL Lec							
								apping	,				I	-	
		-	-	1	1	1		nes (PO	1	10				PSO	-
001	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2		1											<u> </u>	
CO2				-	2	2									
CO3				2											
CO4		2													
	The	strengt			·			1,2,3; V map to				dium, 3	:High	l	

Assessment Plan based or	n Bloom's Ta	xonomy Level (Marks) (For la	b Courses)
Bloom's Taxonomy Level	ISE	MSE	ESE	Total
Remember				
Understand				
Apply	15			15
Analyze	15	10		25
Evaluate		10	20	30

Create		10	20	30
Total Marks	30	30	40	100

			1	Aided Autonomous Instit AY 2022-23	····· ·)				
				urse Information					
Drogr	mmo		1	outer science and engine	paring)				
Progra Class,			First Year M. Tec	ę	ering)				
Class, Cours			6CO531						
Cours		-							
			Natural Languag	-	Pr. T hanks				
Desire	d Reg	uisites:	Mathematics – L	inear Algebra, Probabi	lity Theory				
-									
		g Scheme	ICE	Examination Sc					
Lectu		3 Hrs/week	ISE	MSE	ESE	Total			
Tutor		-	20	30	50	100			
Practi		-	Nil						
Intera	ction	-		Credi	ts: 3				
				ourse Objectives		1			
1	it.	uild Al application	ons such that it wi	Il enable computer to i	read text, hear speech a	nd interpret			
2	To a	cquaint student	s with the basics o	of text processing					
3	To ill	ustrate steps in	volved in building	text mining application	ıs				
4	To sł	· · · ·		et of features for mach					
				CO) with Bloom's Tax	onomy Level				
	1	· · ·	students will be al						
CO1 CO2			l concepts of text		tations of taxt	Understand			
$\frac{CO2}{CO3}$	+ • •			erive different represen oosing appropriate fea		Apply Evaluate			
<u>CO3</u>				eval and Chatbot applic		Creating			
04						creating			
Modu	le		Мо	dule Contents		Hours			
	I	ntroduction							
Ι	e N	xpressions- ext Iinimum edit d	raction of inform istance, Documer	nization, Stemming, Le mation using Regex, nt Similarity measures	Text Normalization,	4			
	p	•	ike NLTK, SciPy, re	2.					
II	In In	ntroduction, IDI	ieval & Language	Models Model, Vector Space M	Model, N-gram	5			
	N			distance, Advanced since Measures, Precision	moothing for language n, Recall, F-measure				
III		ector Space Mo		s, GloVe/Word2Vec m	odel, word embedding, rpus, Word Senses and	4			

	The	strengt		· · · ·		e writte course						lium, 3	High		
CO4		1			1	2									
CO3			2	1											
CO2	2		3												
CO1	1														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
				Р	rogra	mme C))					PSO	
1					<u></u>	CO-I	PO Ma	pping							
1	NIPO	Course	on NP	TEL: Lir	nk	US	eful L	INKS							
						TT	-£1 T	· 1							
2	Jason	Brow	nlee, "I	Deep Le	earning	g for No	atural	Langua	ige Pro	ocessin	g", 201	.7.			
1	3 rd Ec	lition, 2	2020									Standfo	ord Ur	niversit	ty,
	T						eferen								
	Lec	tures o	n Hum	an Lan	guage	Techn	ologies	5, 2017							
2			•						tural L	angua	ge Proo	cessing	", Syn	thesis	
1		n Bird, cations			nd Edv	ward Lo	oper, "I	Natura	l Langı	lage Pr	ocessii	ng with	Pytho	<i>n" ,</i> O' r	reil
	1						ext Bo								
				-		on usin	-	-				ary 515 C			
VI												oheren alysis a		4	
		e Study													
V	Max	Architectures for Sequence Processing, Models for Sequential tagging – MaxEnt, CRF, Recurrent Neural network relevant to NLP													
	Sequ	ience L	Labellii		Parts of	f Speec								5	
	Class	sificatio	on												
IV	Depe	Exet Classification Constituency Grammars, Context-Free Grammar, Constituency Parsing, Dependency Parsing, Lexicons for Sentiment, Distributional Semantics, To Models, Sentiment													

Assessment Plan based of	n Bloom's Ta	xonomy Level (Marks) (For la	b Courses)
Bloom's Taxonomy Level	ISE	MSE	ESE	Total
Remember				
Understand	5	5	10	20
Apply	5	5	20	30
Analyze	5	5	10	20
Evaluate	5	5	10	20
Create			10	10
Total Marks	20	20	60	100

			(Government A	AY 2022-23	/	
				rse Information		
Progra	amme			iter science and en	gineering)	
	Semes	ter	First Year M. Tecl		<u> </u>	
	e Code		6CO572			
Cours	e Nam	e	Soft Computing L	ab		
Desire	d Req	uisites:	Programming kno	owledge		
Те	eaching	g Scheme		Examination	Scheme (Marks)	
Lectur	re	-	LA1	LA2	ESE	Total
Futori		-	30	30	40	100
Practi		2 Hrs/Week			Nil	
ntera	ction	-		Cr	edits: 1	
			~			
	T			irse Objectives		
1			hms and hybrid sys		al neural networks, fi	uzzy sets, fuzzy
2	<u> </u>	<u> </u>	puting based solut		nrohlems	
4	10.64		rse Outcomes (CC			
At the	end of		students will be ab			
		,	soft computing	,	creating prototyp	ing
CO1		cations				Apply
CO2	Evalu	ate soft compu	ting techniques in	building intelligen	t machines	Evaluate
			Ma	dule Contents		
~	~ .		1910	oulle Contents		
Cours	e Cont	ents:				
	nment	S				
Assigi		-				
Assign 1.						
				Text Books		
1.	Rajas	ekaran S., Vijay		Text Books Neural Networks,	Fuzzy Logic and Gene	tic Algorithms", PH
	Rajas 2003	ekaran S., Vijay			Fuzzy Logic and Gene	tic Algorithms", PH
1.	2003		alakshmi Pai G.A. <i>, "</i>	Neural Networks,	Fuzzy Logic and Gene earning", MIT Press (
1.	2003		alakshmi Pai G.A., " nua Bengio, Aaron	Neural Networks, Courville, "Deep L		
1. 1 2	2003 Ian G	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron	Neural Networks, Courville, "Deep L References	earning", MIT Press	e-book
1. 1 2 1	2003 Ian G Jyh-S	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron ;, Chuen-Tsai Sun, I	Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu	earning", MIT Press of ro-Fuzzy and Soft Co	e-book mputing", PHI, 200
1. 1 2	2003 Ian G Jyh-S	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron ;, Chuen-Tsai Sun, I	Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu	earning", MIT Press	e-book mputing", PHI, 200
1. 1 2 1	2003 Ian G Jyh-S	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron s, Chuen-Tsai Sun, F Yuan, "Fuzzy Sets	Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu and Fuzzy Logic: T	earning", MIT Press of ro-Fuzzy and Soft Co	e-book mputing", PHI, 200
1. 1 2 1	2003 Ian G Jyh-S Georg	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron ;, Chuen-Tsai Sun, F Yuan, "Fuzzy Sets [Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu	earning", MIT Press of ro-Fuzzy and Soft Co	e-book mputing", PHI, 200

(Government Aided Autonomous Institute)

			A	AY 2022-23		
			Cour	rse Information		
Progra	amme		M.Tech. (Compu	iter science and engined	ering)	
Class,	Semes	ter	First Year M. Tech	n., Sem II		
Course	e Code	e	6CO592			
Course	e Nam	e	Soft Computing L	ab		
Desire	d Req	uisites:	Programming knc	owledge		
			1			
Te	eachin	g Scheme		Examination Sch	neme (Marks)	
Lectur	·e	-	LA1	LA2	ESE	Total
Tutori	al	-	30	30	40	100
Practi	cal	2 Hrs/week		Nil		
Intera	ction	-		Credit	s: 1	
			1			
			Cou	ırse Objectives		
1	To de	emonstrate know	wledge of impleme	entation of artificial neu	ural networks, fuzzy sets	s, fuzzy logic
1		-	nd hybrid systems			
2	To ev			ions of real-world prob		
A 1	1 0		· · ·	D) with Bloom's Taxo	nomy Level	
			students will be abl			Amalu
CO1 CO2				nique for creating proto building intelligent mad		Apply Evaluat
02	evalu	ate sont compu	ting techniques in t	building intelligent mad	LIIIIIIIIII	Evaluate
Sr. No	D.		Mo	~		
			1110	odule Contents		Hours
			1410	odule Contents		Hours
				odule Contents		Hours
			1410	odule Contents		Hours
			1910	odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours

														-	
	Paiac	okaran		walak	chmi Da	Tex ii G.A., "N	t Bo		orks E			d Cono		orithm).
1	PHI, 2		i S., Vija	iyalak	SIIIIIPa	II G.A., N	leura	annetw	/01КЅ, Г	uzzy Lu	igic an	u Gene	riic Aig	onum	15,
2			low, Yc	shua	Bengio,	Aaron C	ourv	ville, "D	eep Le	arning	", MIT	Press e	e-book		
							eren					-			
1	Jyh-S 2003	-	oger Ja	ng, Ch	uen-Ts	ai Sun, Ei	ji Mi	zutani,	"Neur	o-Fuzz	y and S	Soft Co	mputi	ng", Pŀ	11,
2	Geor	ge J. Kl	ir and I	Bo Yua	an, "Fuz	zy Sets a	nd F	uzzy Lo	ogic: Th	ieory a	nd App	olicatio	ns", Pl	HI, 199)5
1						Usef		inks EL Lec	turoa						
1						CO-PC			luies						
]	Program	nme Ou))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		1			2									
CO2			1		1										
	The	strengt				e written course n						lium, 3	:High		
			Ea		J of the	Asse		-	at leas	st one r	0.				
There are	three of	compoi	nents o	f lab a	ssessm				Lab ES	E.					
MP: Lab											In-Se	mester	Evalu	ation.	
Assessmo nt		Base	ed on		Condu	cted by]]	[ypical	Schee	lule (fo	or 26-v	veek So	em)	Ma	rks
LA1		Lab ac				Course		•	eek 1 t					3	0
		endanc Lab ac				ulty Course						of Wee	ek 6		
LA2		endanc		· I		ulty			/eek 7 t bmissi/			of Wee	k 12	3	0
		Lab ac	tivities	,	Lab C	Course	Du	ring W	eek 15	to Wee	ek 18			4	·0
Lab ESE			e, jour	1	Eas	ulty	M	arks Su	hmissi	on at th	ne end	of Wee	k 18	T	0

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)

Bloom's Taxonomy Level	LA1	LA2	ESE	Total
Remember				
Understand				
Apply	20	10	20	50
Analyze				
Evaluate	10	20	20	50
Create				
Total Marks	30	30	40	100

			(Government A	AY 2022-23	/	
				rse Information		
Progra	amme			iter science and en	gineering)	
	Semes	ter	First Year M. Tecl		<u> </u>	
	e Code		6CO572			
Cours	e Nam	e	Soft Computing L	ab		
Desire	d Req	uisites:	Programming kno	owledge		
Те	eaching	g Scheme		Examination	Scheme (Marks)	
Lectur	re	-	LA1	LA2	ESE	Total
Futori		-	30	30	40	100
Practi		2 Hrs/Week			Nil	
ntera	ction	-		Cr	edits: 1	
			~			
	T			irse Objectives		
1			hms and hybrid sys		al neural networks, fi	uzzy sets, fuzzy
2	<u> </u>	<u> </u>	puting based solut		nrohlems	
4	10.64		rse Outcomes (CC			
At the	end of		students will be ab			
		· · · · ·	soft computing	,	creating prototyp	ing Applu
CO1		cations				Apply
CO2	Evalu	ate soft compu	ting techniques in	building intelligen	t machines	Evaluate
			Ma	dule Contents		
~	~ .		1910	oulle Contents		
Cours	e Cont	ents:				
	nment	S				
Assigi		-				
Assign 1.						
				Text Books		
1.	Rajas	ekaran S., Vijay		Text Books Neural Networks,	Fuzzy Logic and Gene	tic Algorithms", PH
	Rajas 2003	ekaran S., Vijay			Fuzzy Logic and Gene	tic Algorithms", PH
1.	2003		alakshmi Pai G.A. <i>, "</i>	Neural Networks,	Fuzzy Logic and Gene earning", MIT Press (
1.	2003		alakshmi Pai G.A., " nua Bengio, Aaron	Neural Networks, Courville, "Deep L		
1. 1 2	2003 Ian G	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron	Neural Networks, Courville, "Deep L References	earning", MIT Press	e-book
1. 1 2 1	2003 Ian G Jyh-S	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron ;, Chuen-Tsai Sun, I	Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu	earning", MIT Press of ro-Fuzzy and Soft Co	e-book mputing", PHI, 200
1. 1 2	2003 Ian G Jyh-S	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron ;, Chuen-Tsai Sun, I	Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu	earning", MIT Press	e-book mputing", PHI, 200
1. 1 2 1	2003 Ian G Jyh-S	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron s, Chuen-Tsai Sun, F Yuan, "Fuzzy Sets	Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu and Fuzzy Logic: T	earning", MIT Press of ro-Fuzzy and Soft Co	e-book mputing", PHI, 200
1. 1 2 1	2003 Ian G Jyh-S Georg	oodfellow, Yosl	alakshmi Pai G.A., " nua Bengio, Aaron ;, Chuen-Tsai Sun, F Yuan, "Fuzzy Sets [Neural Networks, Courville, "Deep L References Eiji Mizutani, "Neu	earning", MIT Press of ro-Fuzzy and Soft Co	e-book mputing", PHI, 200

(Government Aided Autonomous Institute)

			A	AY 2022-23		
			Cour	rse Information		
Progra	amme		M.Tech. (Compu	iter science and engined	ering)	
Class,	Semes	ter	First Year M. Tech	n., Sem II		
Course	e Code	e	6CO592			
Course	e Nam	e	Soft Computing L	ab		
Desire	d Req	uisites:	Programming knc	owledge		
			1			
Te	eachin	g Scheme		Examination Sch	neme (Marks)	
Lectur	·e	-	LA1	LA2	ESE	Total
Tutori	al	-	30	30	40	100
Practi	cal	2 Hrs/week		Nil		
Intera	ction	-		Credit	s: 1	
			1			
			Cou	ırse Objectives		
1	To de	emonstrate know	wledge of impleme	entation of artificial neu	ural networks, fuzzy sets	s, fuzzy logic
1		-	nd hybrid systems			
2	To ev			ions of real-world prob		
A1	1 0		· · ·	D) with Bloom's Taxo	nomy Level	
			students will be abl			Amalu
CO1 CO2				nique for creating proto building intelligent mad		Apply Evaluat
02	evalu	ate sont compu	ting techniques in t	building intelligent mad	LIIINES	Evaluate
Sr. No	D.		Mo	~		
			1110	odule Contents		Hours
			1410	odule Contents		Hours
				odule Contents		Hours
			1410	odule Contents		Hours
			1910	odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours
				odule Contents		Hours

	Paiac	okaran		walak	chmi Da	Tex ii G.A., "N	t Bo		orks E			d Cono		orithm).
1	PHI, 2		i S., Vija	ауатак	SIIIIIPa	II G.A., I	leura	annetw	/01КЅ, Г	uzzy Lu	igic an	u Gene	riic Aig	onum	15,
2			low, Yo	oshua	Bengio,	Aaron C	ourv	ville, "D	eep Le	arning	", MIT	Press e	e-book		
						-	eren								
1	Jyh-S 2003	-	oger Ja	ng, Ch	iuen-Ts	ai Sun, Ei	ji Mi	izutani,	"Neur	o-Fuzz	y and S	Soft Co	mputi	ng", Pŀ	11,
2	Geor	ge J. Kl	ir and I	Bo Yua	an, "Fuz	zy Sets a	nd F	uzzy Lo	ogic: Th	ieory a	nd App	olicatio	ns", Pl	HI, 199)5
1						Usef		inks EL Lec	turac						
1						CO-PC			tures						
				J	Program	mme Ou))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		1			2									
CO2			1	<u> </u>	1	<u> </u>									
	The	strengt			-	e written course r						lium, 3	:H1gh		
			Ec		Joi the		essm	-	at icas	st one r	0.				
There are	three of	compoi	nents o	f lab a	issessm				Lab ES	E.					
MP: Lab	ESE i	s a sep	arate h	ead of	passing	g. LA1, I	-	·						ation.	
Assessmo nt		Base	ed on		Condu	cted by]]	Fypica	Schee	lule (fo	or 26-v	veek So	em)	Ma	rks
LA1		Lab ac				Course		iring W						3	0
		endanc Lab ac				ulty Course						of Wee	ek 6		
LA2		endanc		· I		ulty		iring W arks Su				of Wee	k 12	3	0
	Lab activities Lab Course During Week 15 to Week 18						Du	ring W	eek 15	to Wee	ek 18				·0
Lab ESE			e, jour		Fac	ulty	M	arks Su	hmissi	on at th	ne end	of Wee	k 18		0

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)

Bloom's Taxonomy Level	ISE	MSE	ESE	Total
Remember				
Understand				
Apply	20	10	20	50
Analyze				
Evaluate	10	20	20	50
Create				
Total Marks	30	30	40	100

		1	Aided Autonomous Institut AY 2022-23				
			rse Information				
Program	ne	1	iter science and engined	pring)			
Class, Sen		First Year M.Tec		(ing)			
Course Co		6C0571					
Course Na		Advanced compu	iter Lah				
Desired R			rsis of Algorithms Basics	, Programming			
		1					
	Teaching Scheme Examination Scheme (Marks)						
Lecture	-	LA1	LA2	ESE	Total		
Tutorial	-	30	30	40	100		
Practical	2 Hrs/week			1			
Interactio	<u>n</u> -		Credits	5: 1			
		Co	urse Objectives				
, To	introduce studen		methods of designing a	and analysing algorith	ms.		
1				, , ,			
			algorithm and use it for	· · ·			
			es of problems along wi	th recent developme	nts in the area		
01	algorithmic design		D) with Bloom's Taxo	nomy Level			
At the end		students will be ab					
			different strategies for	problem solving	Analyse		
CO2 ev	aluate the comple	xity of the algorith	m	· · · ·	Evaluat		
CO3 de	velop the solutior	n for open-ended p	roblems and document	it	-		
C. No					Create		
			. • <i>. .</i>				
Sr. No.			Assignments				
1	Implement vario		Assignments				
	Implement vario		Assignments		Hours		
	Implement vario	us algorithms.	Assignments		Hours		
1		us algorithms.	Assignments		Hours 2		
1	Implement BFS a	us algorithms. algorithm.	Assignments		Hours 2		
1		us algorithms. algorithm.	Assignments		Hours 2 2		
1	Implement BFS a	us algorithms. algorithm. algorithm.	Assignments		Hours 2 2		
1 2 3 4	Implement BFS a	us algorithms. algorithm. algorithm.	Assignments		Hours 2 2 2 2 2		
1 2 3	Implement BFS a Implement DFS a Implement Dijks	us algorithms. algorithm. algorithm. tra algorithm.	Assignments		Hours 2 2 2 2 2		
1 2 3 4 5	Implement BFS a Implement DFS a Implement Dijks Implement krusk	us algorithms. algorithm. algorithm. tra algorithm. al's algorithm.			Hours 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
1 2 3 4	Implement BFS a Implement DFS a Implement Dijks Implement krusk	us algorithms. algorithm. algorithm. tra algorithm.			Hours 2 2 2 2 2 2 2 2 2		
1 2 3 4 5 6	Implement BFS a Implement DFS a Implement Dijks Implement krusk	us algorithms. algorithm. algorithm. tra algorithm. al's algorithm. I-Warshall algorithm			Hours 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
1 2 3 4 5	Implement BFS a Implement DFS a Implement Dijks Implement krusk	us algorithms. algorithm. algorithm. tra algorithm. al's algorithm. I-Warshall algorithm			2 2 2 2 2		
1 2 3 4 5 6	Implement BFS a Implement DFS a Implement Dijks Implement krusk	us algorithms. algorithm. algorithm. tra algorithm. al's algorithm. I-Warshall algorithm x multiplication.			Hours 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

9	Imp	lement	RSA	algorit	thm.										2
10	Imp	lement	Fouri	er tran	sform	algorith	m.								2
11	Imp	lement	P-NP	, NP-H	Hard.										2
						Т	ovt D	looks							
1					serson dition, 1	Charles			onald I	, Stei	n Cliffo	ord <i>, Int</i>	roduc	tion to)
2	Aho, Pub.	Норси	oft, U	llman,	The D	esign a		alysis Co., 19	U C	ıputer	Algori	thms,	Addiso	on-We	sley
						т	Refere	naac							
1			Klei	nberg	and Ta	rdos, A			<i>sign,</i> P	earsor	n Educa	ation L	imited	1	
2		Robe	rt Sed	gewick	k, "Algo	orithms	in C+	+", Ado	dison-V	Vesley	Profe	ssional	, Thirc	l Editio	on
				2/-	~			Links							
1	NP	TEL V	ideos	of 'Da	ıta Stru	ctures d	and A	lgorith	ms' Co	ourse:	<u>Link</u>				
						CO-	PO N	lappin	ıg						
				1		nme O				10				PSC	
CO1	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1 CO2	3		2			2									
CO3		2		2	1	_									
	The	streng		••	•	be writ						ledium	, 3:Hi	gh	1
			E	ach C	O of th	e cours		-	to at le	east on	e PO.				
here are t	hraa a	omnon	onte o	f lob o			sessn 1 T A		Lob E	SE					
MP: Lab I											ıs In-S	emeste	er Eval	uatior	l.
ssessmei t	1	Base	ed on			ucted y	T	ypical	Sched	lule (fo	or 26-v	veek S	lem)	N	larks
LA1		Lab act endanc		·		Course ulty		ring W arks Su				l of We	eek 6		30
LA2		Lab act		´	Lab C	Course ulty		aring W arks Su				l of We	ek		30
Lab ESE		Lab act endanc		´		Course ulty	Du	ring W arks Su				l of We	ek		40
Veek 1 inc 26-week hall includ uitable ac	semes le perf tivities	ter. Th	e actua g expe r the n	al sche riment	dule sł ts, mini	nall be a i-projec	typica is per t, pres	acade: sentatio	nic cal ons, dr	endar. awings	Lab ao s, prog	ctivitie rammi	s/Lab ng ano	perfor l other	mance

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)										
Bloom's Taxonomy Level	ISE	MSE	ESE	Total						
Remember										
Understand										
Apply	20	10	5	35						
Analyze	10	10	10	30						
Evaluate		10	10	20						
Create			15	15						
Total Marks	30	30	40	100						

		••		ge of Engineering ided Autonomous Institut			
			Α	Y 2022-23			
			Cour	se Information			
Progra	amme		M.Tech. (Comput	ter science and enginee	ering)		
Class,	Semes	ter	First Year M. Tech	., Sem II			
Cours	e Code	9	6CO522				
Cours	e Nam	e	Soft Computing				
Desire	d Req	uisites:	Basic knowledge o	of mathematics			
Т	achin	a Sahama		Examination Sal	ama (Marka)		
Lectur		g Scheme 3 Hrs/week	ISE	Examination Sch MSE	1	Total	
Tutori	-	3 mrs/week	20	30	ESE 50	Total 100	
Practi		-	20		50	100	
Intera		-		Credit	x: 3		
inci a							
			Cou	rse Objectives			
1	To fo	ster student's a		•	ed solutions for real-world	problem	
1	- ·		<u> </u>				
2	netw	orks, fuzzy sets,	fuzzy logic, genetic	algorithms	lamentals of artificial neu	ral	
3	To di		plications of ANN, F	•			
A 4 41 a	and of) with Bloom's Taxor	nomy Level		
	1		students will be able	heir roles in building in	ntelligent	Analyze	
CO1	mach		ing teeninques and t	nen roles in bundling i	nemgent	Analyze	
CO2	1	ate fuzzy logic eering problem		s techniques to solve v	arious	Evaluate	
CO3		• ·		etic algorithms and hy	brid	Create	
	appro	baches					
Mal			N <i>T</i>	dulo Contonto		II.	
Modu		troduction		dule Contents	ng Constituente Frem	Hours	
Ι	Co ar	onventional AI t nd Soft Compu	to Computational In ting, Difference be	telligence, Characteris tween Hard Computi	ng Constituents, From stics of Neuro Computing ng and Soft Computing,	6	
II	Concepts of Learning and Adaptation Fuzzy Logic: Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership II Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making						
Neural Networks: Machine Learning Using Neural Network, Adaptive Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial Basis III Function Networks : Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance Architectures, Advances in Neural Networks							
IV		-		Genetic Algorithms (G g Approach to Knowle	GA), Applications of GA in dge Acquisition	7	

V		rid Sy em(AN		: Intro	ductio	n to H	lybrid	System	ns, Ad	aptive	Neuro	9 Fuzzy	Infer	ence	6
VI		-	-	Spark , Deep				onvolu	tional	neura	l netv	vorks,	Recu	rrent	7
	1							Books							
1	-	sekara 2003	n S. <i>,</i> V	ijayala	kshmi	Pai G.	A., "Ne	eural N	etwor	ks, Fuz	zy Log	gic and	Gene	tic Alg	orithms",
2	lan G	Goodfe	llow, Y	/oshua	ı Bengi	io, Aar	on Co	urville,	"Deep	o Learn	ning", I	MIT Pre	ess e-	book	
							Refer	ences							
1	Jyh-9 2003	-	loger J	ang, C	huen-	Tsai Su	ın, Eiji	Mizuta	ini, "N	euro-F	ⁱ uzzy a	nd Sof	t Com	puting	ς", ΡΗΙ,
2	Geor	ge J. K	lir and	l Bo Yu	ıan, "F	uzzy S	ets and	d Fuzzy	' Logic	: Theo	ry and	Applic	ation	s", PHI	, 1995
						CC)-PO I	Mappi	ng						
				P	rograr	nme (Dutcor	nes (P	0)					PS	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2			3											
CO2			2	2		2									
CO3	2		2	2		2									
CO4															
	The	streng		nappin	-		itten a	s 1,2,3	; Whe	re, 1:L	ow, 2:	Mediu	m, 3:H	ligh	

Each CO of the course must map to at least one PO.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)										
Bloom's Taxonomy Level	ISE	MSE	ESE	Total						
Remember										
Understand										
Apply										
Analyze	20	10	20	50						
Evaluate		10	20	30						
Create			20	20						
Remember										
Total	20	20	60	100						

		W		ge of Engineerir			
			1	AY 2022-23			
			Cou	rse Information			
Progr	amme		M. Tech. (Comput	ter Science and Engin	eering)		
Class,	, Seme	ster	First Year M. Tech	n., Sem II			
Cours	se Cod	e	6CO521				
Cours	se Nan	ne	Advanced Compu	iter Algorithms			
Desire	ed Rec	uisites:	Design and Analy	sis of Algorithms Basi	CS		
T		- Cahama		E	hama (Maulus)		
	Teaching SchemeExamination Scheme (Marks)Lecture3 Hrs/weekISEMSEESE						
Tutor			20	30	50 ESE	Total 100	
Practi			20	<u> </u>		100	
Intera		-		Cred			
			Cou	ırse Objectives			
1	To ir	ntroduce studen	ts to the advanced	methods of designing	g and analysing algorithms.		
2	Тоа	llow students ch					
		now students ch	noose appropriate a	lgorithm and use it fo	or a specific problem.		
2				Ilgorithm and use it for es of problems along	or a specific problem. with recent developments	in the area	
3	To ir	npart knowledg gorithmic desigr	e of different classe n.	es of problems along	with recent developments	in the area	
	To ir of al	npart knowledg gorithmic desigr Cou	e of different classe n. arse Outcomes (CC	es of problems along) with Bloom's Tax	with recent developments	in the area	
At the	To ir of al end o	npart knowledg gorithmic desigr Cou f the course, the	e of different classe n. 1rse Outcomes (CC students will be abl	es of problems along D) with Bloom's Tax le to,	with recent developments onomy Level	1	
At the CO1	To ir of al end o appl	npart knowledg gorithmic desigr Cou f the course, the y algorithms inv	e of different classe n. a rse Outcomes (CC students will be abl volving different stra	es of problems along D) with Bloom's Tax le to, ategies for problem so	with recent developments onomy Level	Apply	
At the	To ir of al end o appl anal	npart knowledg gorithmic desigr Cou f the course, the y algorithms inv yze algorithm fo	e of different classe n. arse Outcomes (CC students will be abl rolving different stra or given problem at	es of problems along D) with Bloom's Tax le to, ategies for problem so hand	with recent developments onomy Level	1	
At the CO1 CO2	To ir of al end o appl anal	npart knowledg gorithmic desigr Cou f the course, the y algorithms inv yze algorithm fo	e of different classe n. a rse Outcomes (CC students will be abl volving different stra	es of problems along D) with Bloom's Tax le to, ategies for problem so hand	with recent developments onomy Level	Apply Analyze	
At the CO1 CO2	To ir of al end o appl anal eval	npart knowledg gorithmic desigr Cou f the course, the y algorithms inv yze algorithm fo	e of different classe n. arse Outcomes (CC students will be abl volving different stra or given problem at exity of the algorithm	es of problems along D) with Bloom's Tax le to, ategies for problem so hand	with recent developments onomy Level	Apply Analyze	
At the CO1 CO2 CO3	To ir of al end o appl anal eval	npart knowledg gorithmic desigr Cou f the course, the y algorithms inv yze algorithm fo uate the comple	e of different classe n. arse Outcomes (CC students will be abl volving different stra or given problem at exity of the algorithm Mo corithms	odule Contents	with recent developments onomy Level	Apply Analyze Evaluat	
At the CO1 CO2 CO3	To ir of al end o appl anal eval ile	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithm fo uate the comple Elementary Alg Gorting: Review	e of different classe n. arse Outcomes (CC students will be abl volving different stra or given problem at exity of the algorithm Mo porithms y of various sorting a	es of problems along v D) with Bloom's Tax le to, ategies for problem so hand m odule Contents algorithms	with recent developments onomy Level olving	Apply Analyze Evaluat	
At the CO1 CO2 CO3	To ir of al end o appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithm fo uate the comple Clementary Alg Sorting: Review Graph: Topolog	e of different classe n. urse Outcomes (CC students will be able volving different stra or given problem at exity of the algorithm Mo corithms v of various sorting a fical sorting, Definit	es of problems along v D) with Bloom's Tax le to, ategies for problem si hand m odule Contents algorithms ions and Elementary	with recent developments onomy Level olving Algorithms: Shortest path	Apply Analyze Evaluat	
At the CO1 CO2 CO3	To ir of al end o appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms fo uate the comple Clementary Alg Sorting: Review Graph: Topolog	e of different classe n. arse Outcomes (CC students will be abl volving different stra or given problem at exity of the algorithm Mo corithms of various sorting a gical sorting, Definit t path in edge-weig	es of problems along v D) with Bloom's Tax le to, ategies for problem so hand m odule Contents algorithms ions and Elementary ghted case (Dijkstra)	Algorithms: Shortest path s), depth-first search and	Apply Analyze Evaluat	
At the CO1 CO2 CO3	To ir of al end o appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Elementary Alg Sorting: Review Graph: Topolog by BFS, shortes computation of s	e of different classe n. arse Outcomes (CC students will be abl volving different stra or given problem at exity of the algorithm Mo corithms of various sorting a gical sorting, Definit t path in edge-weig	by of problems along version of problems along version of problem's Tax le to, ategies for problem so hand m bodule Contents algorithms and Elementary ghted case (Dijkstra's components, emphasi	with recent developments onomy Level olving Algorithms: Shortest path	Apply Analyze Evaluat	
At the CO1 CO2 CO3	To ir of al end o appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Elementary Alg Sorting: Review Graph: Topolog by BFS, shortes computation of s	e of different classe n. arse Outcomes (CC students will be able rolving different stra or given problem at exity of the algorithm Mo gorithms v of various sorting a gical sorting, Definit t path in edge-weig strongly connected of d time/space analys	by of problems along version of problems along version of problem's Tax le to, ategies for problem so hand m bodule Contents algorithms and Elementary ghted case (Dijkstra's components, emphasi	Algorithms: Shortest path s), depth-first search and	Apply Analyze Evaluat	
At the CO1 CO2 CO3	To ir of al end o appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Clementary Alg Sorting: Review Graph: Topolog by BFS, shortes computation of s he algorithm and mortized analys Graph Algorithm	e of different classe n. arse Outcomes (CC students will be abl volving different stra or given problem at exity of the algorithm Mo forithms of various sorting a fical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms	bes of problems along very bes of problems along very best of problem's Tax le to, ategies for problem so hand m bodule Contents algorithms and Elementary ghted case (Dijkstra's components, emphasisis, example of best of the set of	Algorithms: Shortest path s), depth-first search and s on correctness proof of	Apply Analyze Evaluat	
At the CO1 CO2 CO3 Modu	To ir of al end o appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Elementary Alg Sorting: Review Graph: Topolog by BFS, shortest computation of s he algorithm and mortized analys Graph Algorithm	e of different classe n. arse Outcomes (CC students will be able rolving different stra- br given problem at exity of the algorithm Mo forithms of various sorting a gical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms luction to greedy par	 b) with Bloom's Tax b) with Bloom's Tax le to, ategies for problem so hand m bdule Contents algorithms ions and Elementary ghted case (Dijkstra's components, emphasisis, example of radigm, algorithm to c 	with recent developments onomy Level olving Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum	Apply Analyze Evaluate Hours 8	
At the CO1 CO2 CO3	To ir of al end o appl anal eval 1le I S C C t a c C t v v v	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Elementary Alg Sorting: Review Graph: Topolog by BFS, shortest computation of s he algorithm and mortized analys Graph Algorith Matroids: Introd veight maximal	e of different classe n. arse Outcomes (CC students will be able rolving different stra- or given problem at exity of the algorithm Mo gorithms v of various sorting a gical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms luction to greedy pari independent set. Ap	 b) with Bloom's Tax b) with Bloom's Tax le to, ategies for problem s hand m bdule Contents algorithms components, emphasi components, emphasi sis, example of radigm, algorithm to coplication to Minimur 	Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum n Spanning Tree.	Apply Analyze Evaluat Hours 8	
At the CO1 CO2 CO3 Modu	To ir of al appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Clementary Alg Sorting: Review Graph: Topolog by BFS, shortes computation of s he algorithm and mortized analys Graph Algorithm Matroids: Introd veight maximal is	e of different classe n. Irse Outcomes (CC students will be able volving different stra- or given problem at exity of the algorithm Mo forithms v of various sorting a fical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms luction to greedy pari independent set. App n Graphs: Floyd-Wa	by with Bloom's Tax le to, ategies for problem's Tax hand m bdule Contents algorithms ions and Elementary ghted case (Dijkstra's components, emphasi is, example of radigm, algorithm to co pplication to Minimur arshall algorithm and	Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum a Spanning Tree. d introduction to dynamic	Apply Analyze Evaluat Hours 8	
At the CO1 CO2 CO3 Modu	To ir of al end o appl anal eval 1le I S C C t a C V S S F	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Elementary Alg Sorting: Review Graph: Topolog by BFS, shortest computation of s he algorithm and mortized analys Graph Algorithm Matroids: Introd veight maximal is bortest Path in programming pa	e of different classe n. arse Outcomes (CC students will be able olving different stra- or given problem at exity of the algorithm Mo forithms of various sorting a gical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms huction to greedy pari independent set. Ap n Graphs: Floyd-Wa radigm. More exam	 b) with Bloom's Tax b) with Bloom's Tax le to, ategies for problem s hand m bdule Contents algorithms components, emphasi components, emphasi sis, example of radigm, algorithm to coplication to Minimur 	Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum a Spanning Tree. d introduction to dynamic	Apply Analyze Evaluat Hours 8	
At the CO1 CO2 CO3 Modu	To ir of al appl anal eval	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Elementary Alg Sorting: Review Graph: Topolog by BFS, shortest computation of s he algorithm and mortized analys Graph Algorithm Matroids: Introd veight maximal schortest Path in programming pa Parallel Algorith	e of different classe n. arse Outcomes (CC students will be able volving different stra- or given problem at exity of the algorithm Mo sorithms v of various sorting a gical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms luction to greedy par- independent set. App Graphs: Floyd-Wa rradigm. More exam- hms	by with Bloom's Tax le to, ategies for problem's Tax hand m odule Contents algorithms ions and Elementary ghted case (Dijkstra's components, emphasi is, example of radigm, algorithm to c oplication to Minimur arshall algorithm and pples of dynamic prog	Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum a Spanning Tree. d introduction to dynamic gramming.	Apply Analyze Evaluat Hours 8	
At the CO1 CO2 CO3 Modu	To ir of al appl anal eval ile I f c t c t t a c f f l f f f f f f f f f f f f f f f f	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Clementary Alg Sorting: Review Graph: Topolog by BFS, shortest computation of s he algorithm and mortized analys Graph Algorithm Matroids: Introd veight maximal schortest Path in programming pa Parallel Algorith ntroduction, Da	e of different classe n. arse Outcomes (CC students will be able volving different stra- or given problem at exity of the algorithm Mo orithms v of various sorting a fical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms luction to greedy pari independent set. Ap n Graphs: Floyd-Wa radigm. More exam- hms tta and Temporal p	 b) with Bloom's Tax b) with Bloom's Tax le to, ategies for problem's hand m bdule Contents algorithms ions and Elementary ghted case (Dijkstra's components, emphasisis, example of radigm, algorithm to coplication to Minimurarshall algorithm and ples of dynamic program barallelism, RAM an 	with recent developments onomy Level Diving Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum n Spanning Tree. I introduction to dynamic gramming. d PRAM Model, Shared	Apply Analyze Evaluate Hours 8	
At the CO1 CO2 CO3 Modu	To ir of al appl anal eval ile I S C t t c t t a f f I I I N V V S S F I I I N	npart knowledg gorithmic design Cou f the course, the y algorithms inv yze algorithms inv yze algorithm fo uate the comple Clementary Alg Sorting: Review Graph: Topolog by BFS, shortes computation of s he algorithm and mortized analys Graph Algorith Matroids: Introd veight maximal is chortest Path in programming pa Parallel Algorith ntroduction, Da Memory and M	e of different classe n. Irse Outcomes (CC students will be able volving different stra- or given problem at exity of the algorithm Mo forithms v of various sorting a fical sorting, Definit t path in edge-weig strongly connected of d time/space analys sis. ms fluction to greedy par- independent set. Ap h Graphs: Floyd-Wa radigm. More exam- hms ta and Temporal p- lessage Passing M	 b) with Bloom's Tax b) with Bloom's Tax le to, ategies for problem's hand m bdule Contents algorithms ions and Elementary ghted case (Dijkstra's components, emphasisis, example of radigm, algorithm to coplication to Minimurarshall algorithm and ples of dynamic program barallelism, RAM an 	with recent developments onomy Level plving Algorithms: Shortest path s), depth-first search and s on correctness proof of ompute a maximum n Spanning Tree. d introduction to dynamic gramming. d PRAM Model, Shared ithms: Prefix Sum, List	Apply Analyze Evaluat Hours 8	

	Mod	ulo Do	n n og og og	station	andT	ът									
		lulo Re					/nolvn	miolo	· Chin		mainda	er Theo	rom		
IV												owers (7
		ent, Th						mouu		csenta		owers	or an		
				.	•	• • •		x field.	DFT in	modu	lo ring.	Fast Fo	ourier		
	Tran	sform a	algoritl	nm.	-	-	-								
												P-Hard	, NP		
	Complete, Examples, Proof of NP-hardness and NP-completeness.One or more of the following topics based on interest- Approximation algorithms														
V	Randomized Algorithms, Interior Point Method, Advanced Number Theoretic												5		
	Algorithm														
	-	Recent Trends													
VI	Recent Trends in problem solving paradigms using recent searching and sorting											5			
	techniques by applying recently proposed data structures.												0		
						Т	ext Bo	oks							
1															
2								-			cepts a	nd case	s, Vik	as	
2		shing H							0.						
							eferen								
1	Klein	berg ar	d Tard	los, Alg	orithm	n Desig	n, Peai	rson Ec	lucatio	n Limit	ed				
2	Robe	rt Sedg	ewick,	"Algor	rithms	in C++'	', Addis	son-We	esley P	rofessi	onal, T	hird Ed	ition		
	-						eful Li								
1	NPTE	L Video	os of ' <i>D</i>	oata Sti	ructure		-			<u>Link</u>					
						CO-I	PO Ma	pping							
				P	rogra	mme (Outcon	nes (PO	D)					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1				2											
CO2	2			3											
CO3	1		1			2									
		strenot	h of m	anning	is to b		en as 1	2 3· W	/here	l·Low	2.Med	lium, 3	∣ ∙Hiơh		
	1 IIC	sucingt							at leas			num, J	.ingii		
			Le			course	must	map it	at icas	st one I	. 0.				

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)									
Bloom's Taxonomy Level	ISE	MSE	ESE	Total					
Remember									
Understand	5	5	10	20					
Apply	5	10	20	35					
Analyze	5	10	10	25					
Evaluate	5	5	10	20					
Create									
Total Marks	20	30	50	100					

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)										
	AY 2022-23										
	Course Information										
Programme		M.Tech. (Compu	uter science and en	gineering)							
Class, Semes	ster	First Year M. Tec	h., Sem II								
Course Code	9	6CO576									
Course Nam	e	Theory and Appl Lab	ications of Remote	e Sensing & GIS							
Desired Req	uisites:	Fundamentals of	Image processing	, Programming							
Teachin	g Scheme		Examination	Scheme (Marks)							
Lecture - LA1 LA2 ESE Total											

Tutorial	-	30	30	40	100
Practical	2 Hrs/Week	Nil			
Interaction	-		Cı	redits: 1	
		Cou	urse Objectives		
— ·				. (20) 10	

1	To inculcate and demonstrate knowledge of Remote Sensing (RS) and Geographic Information
I	System (GIS)

2	To practice RS and GIS tools and techniques using RS and GIS data and data products
3	To provide students hands on experience on processing RS and GIS data and use the ad

To provide students hands on experience on processing RS and GIS data and use the advanced Course Outcomes (CO) with Bloom's Taxonomy Level

CO1	Practice theory and concepts of RS and GIS	Apply
CO2	Verify and process data and data products of RS and GIS using tools/software	Evaluate
CO3	Design solutions for various interdisciplinary problems using RS and GIS tools/software and advanced concepts in computer science and engineering (DIP, RDBMS, ML, etc.).	Create

Mini Project Guidelines

Course Contents:

Assignments

- 1. Describe the History of Remote Sensing.
- 2. Explain the significance of EMR in remote sensing?
- 3. Identify the different types of Electromagnetic radiation?
- 4. Describe about the spectral signature concepts.
- 5. Identify, what are the characteristic of EMR interaction with soil particles.
- 6. Describe as how does EMR interact with Ozone?
- 7. List out the differences between raster and vector data models.
- 8. Find out what are the common errors that occur in GIS database
- 9. Identify as how data editing is done in GIS.
- 10. What are the necessary guidelines that should be taken in to consideration in order to minimize errors in GIS?
- 11. Describe the importance of GIS in planning.

Text Books

1 Chandra, A.M. and Gosh, S.K., "Remote Sensing and GIS", Narosa Publishing House. 2008

2	Lo, C.P. and Young, A.K.W., "Concepts and Techniques of Geographical Information System",
_	Prentice Hall India. 20012
	References
1	Lillesand, T.M. and Kieffer, "Remote Sensing and Image Interpretation", John Wiley and Sons, 6th
1	Edition. 2012
2	Chang, K, "Introduction to Geographical Systems", Tata McGraw-Hill, 4th Edition. 2010
	Useful Links
	NPTEL: https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ce08
1	https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-ce10

			СО-РО Марр	oing		
			Programme O	utcomes (PO)		
	1	2	3	4	5	6
CO1			2			
CO2	2			2		
CO3	3	2		2		2
The strength of mapping is to be written as 1.2.3; Here 1: Low 2: Medium 3: High						

Assessment Plan based on Bloom's Taxonomy Level (Marks)				
Bloom's Taxonomy Level	LA1	LA2	ESE	Total
Remember				
Understand				
Apply	20	10	5	35
Analyze	10	10	10	30
Evaluate		10	10	20
Create			15	15
Total	30	30	40	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)				
AY 2022-23				
Course Information				
Programme M.Tech. (Computer science and engineering)				
Class, Semester	First Year M. Tech., Sem II			
Course Code	6CO573			
Course Name	Pre-dissertation work and seminar			
Desired Requisites: Programming knowledge				

Teaching Scheme		Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/Week		Nil			
Interaction	-	Credits: 1				

Course Objectives				
1	to find a high-quality research topic			
2	to develop a convincing research proposal			
3	to craft a high-quality introduction and literature review			
4	to choose a suitable methodology and present your results			
5	to polish your dissertation or thesis for the highest marks			
Course Outcomes (CO) with Bloom's Taxonomy Level				
At the end of the course, the students will be able to,				
CO1	Developing research based knowledge	Apply		
CO2	Creating research based work	Create		

Module Contents

Course Contents:

Module I: Introduction.

Module II: Review of Literature.

Module III: Methodology (Research Design & Methods)

Module IV: Presentation of Research (Results)

Module V: Summary, Implications, Conclusions (Discussion)

This second course of a two-semester sequence is designed to assist students in developing a dissertation proposal consisting of three chapters. This includes working to develop a clearly defined research idea, introduction, literature review, theoretical/conceptual framework, and research design. The Dissertation Seminar sequence will also provide networking opportunities with students in a similar place in their graduate studies as well as professional development designed to help students complete the dissertation after finishing the course sequence.

Assignments

1

1. Review paper publication

Text Books
HANDBOOK OF RESEARCH METHODOLOGY

	 August 2017 Edition: 1 Publisher: Educreation ISBN: 978-1-5457-0340-3
2	
	References
1	Different research papers
2	
	Useful Links
1	NPTEL LECTURES

					Progra	mme O	utcon	nes (PC))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		1			2									
CO2			1		1										
I	The	strengt		••	g is to b							lium, 3	:High	1	
			Ea	ich C	O of the	course	must	map to	at leas	st one l	20.				
						As	sessm	ent							
There are t IMP: Lab						· ·	,				s In-Se	mester	Evalu	ation.	
		D			Condu	cted by	, I 1	Typical	Schor	lulo (fa	or 26-v	vool S	(m	M	rk
Assessme nt		Base	ea on		Condu	cicu by		rypical	Scher	iuic (it	51 20-1	veek s	em)	1914	11 K3
nt		Base		,				ring W							
			tivities	´	Lab C		Du	· · ·	eek 1 t	to Wee	k 6				0
nt LA1	att	Lab act	tivities e, jour	nal	Lab C Fac	Course	Du Ma	ring W	eek 1 t bmissi	o Wee on at tl	k 6 ne end			3	0
nt	att	Lab act	tivities e, jour tivities	nal ,	Lab C Fac Lab C	Course ulty	Du Ma Du	ring W arks Sul	eek 1 t bmissi eek 7 t	o Wee on at the	k 6 ne end k 12	of Wee	ek 6	3	
nt LA1	atte	Lab act endanc Lab act	tivities e, jour tivities e, jour	nal , nal	Lab C Fac Lab C Fac	Course ulty Course	Du Ma Du Ma	ring W urks Sul ring W	eek 1 t bmissi eek 7 t bmissi	on at the on at the on at the one	k 6 ne end k 12 ne end	of Wee	ek 6	3	0

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)

Bloom's Taxonomy Level	LA1	LA2	ESE	Total
Remember				
Understand				
Apply	20	10	20	50
Analyze				
Evaluate	10	20	20	50
Create				
Total Marks	30	30	40	100

	Walcl	0	of Engineering d Autonomous Institu				
		AY	2022-23				
		Course	Information				
Programme		M.Tech.					
Class, Semester		First Year M	. Tech.CSE Sem II				
Course Code		6OE509					
Course Name		Machine Lea	rning in practice				
Desired Requisites	5:	Basic mather	natics and python p	rogramming			
		·					
Teaching	Scheme		Examination Scheme (Marks)				
Lecture	3 Hrs/week	ISE	MSE	ESE	Total		
Tutorial	-	20	30	50	100		

	Course Objectives	
1	To introduce python and mathematical concepts required for machine learning	
2	To prepare data for machine learning	
3	To implement supervised and unsupervised learning algorithm	
	Course Outcomes (CO) with Bloom's Taxonomy Level	
CO1	Apply different data pre-processing techniques required for data preparation.	Apply
CO2	Identify and implement different machine learning algorithms to solve real life problems.	Analyze
CO3	Evaluate and compare performance of the machine learning algorithms.	Evaluate

Credits: 3

Practical

Interaction

-

-

Module	Module Contents	Hours				
I	Introduction to Machine Learning Introduction, Types of machine learning, Applications of Machine Learning,					
1	Python basics: basic constructs of python, pandas, NumPy, Matplotlib for data visualization	6				
	Data pre-processing					
II	Data Cleaning: handling missing values, removing noise from data, handling categorical features, Feature selection and reduction, Data normalization,	6				
	Train/test split, cross-validation Supervised Learning-I					
	• 0					
III	III Linear regression, multiple regression, MSE, RMSE Classification using Naïve Bayes classifier, Decision tree classifier, KNN, logistic regression Sumerrised Learning II. Encemble, modeley, tree based, elserithms, Decision	8				
	Supervised Learning-II Ensemble models: tree-based algorithms, Bagging,					
	Boosting, Stacking					
IV	Model Performance	8				
	Confusion matrices, accuracy, precision, recall, F1 score, Hyperparameter					
	tuning, deployment					
	Unsupervised Learning					
V	Clustering- K means clustering, HDBSCAN, Dimensionality reduction using PCA.	5				
	Reinforcement learning and Case study					
VI	Introduction to reinforcement learning, Types, elements and applications of					
11	Reinforcement learning, Case studies based on various applications of machine	6				
	learning algorithms in real life.					
	Text Books					

1	Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.
2	Introduction to Machine Learning Edition 2, by Ethem Alpaydin.
3	
	References
1	
2	
3	
	Useful Links

1	NPTEL 'Intr	oduction	to Machine le	earning' -Link	<u><</u>		
2				-			
			C	O-PO Mappin	g		
				Programme	Outcomes (PO)		
		1	2	3	4	5	6
CO	1 2	2	2				
CO2	2				3		
CO3	3	1		1			2
The stren	gth of mapping	is to be w	ritten as 1,2,3;	Where, 1: Lov	w, 2: Medium, 3:	High.	<u>.</u>

Each CO of the course must map to at least one PO.

Assessment (for Theory Course)

The assessment is based on 1 in-semester examinations in the form of ISE of 20 marks and MSE of 30 Marks. Also, there is End-Sem examination (ESE) of 50 marks. MSE shall be typically on modules 1 2 and 3, ISE based typically on all the modules and ESE shall be on all modules with nearly 30% weightage on first 3 modules and 70% weightage on modules 4, 5, 6.

1	Assessment Plan based on B	loom's Taxonom	y Level (Marks)	For Theory Co	urse
Bloo	m's Taxonomy Level	ISE	MSE	ESE	Total
1	Remember				
2	Understand				
3	Apply		15	20	35
4	Analyse		15	20	35
5	Evaluate	20		10	30
6	Create				
	Total	20	30	50	100

		X	alahand Collo	go of Enginoo	ring Sangli			
		vv	alchand Colle	dided Autonomous In				
			1	X <i>iaea Autonomous In</i> XY 2022-23				
				rse Information				
Drogre	mmo				rincoring)			
ProgrammeM.Tech. (Computer science and engineering)Class, SemesterFirst Year M. Tech., Sem II								
Class, Course			First Year M. Tech., Sem II 6CO575					
Course				and compression L				
		e uisites:		ecryption techniqu				
Desire	u Keq		Encryption and d	ecryption techniqu				
	i	g Scheme			Scheme (Marks)			
Lectur	-	-	LA1	LA2	ESE	Total		
Tutori		-	30	30	40	100		
Practi		2 Hrs/Week						
Intera	ction	-		Cr	edits: 1			
			Car					
	4 - 1 - 4			irse Objectives	- C			
1	theor	у	l encryption techni					
			bes and message d			ithms including secret		
3	key er	ptography, has	nes and message u	igests, and public i				
5		Соц	rse Outcomes (CO)) with Bloom's T	axonomy Level			
At the	end of		students will be ab		uxonomy Lever			
			ption techniques			Apply		
			e different cryptogr	aphic algorithms		Evaluate		
CO3								
			Exper	iment Guidelines				
Experi	iment	list:						
1.		nplement Huf	ē					
2.		1	hmetic Coding.					
3.		nplement µ la						
4.			dimension DCT					
5.			dimension DCT	ור				
6.		1	nese Remainder T					
7.		1	ser Cipher Algori	thm				
8.		nplement RSA	Ū.	1				
9.	1 0 1r	nplement Diff	ie-Hellman Key	exchange				
				Text Books				
1	Data (Compression . Da	vid Salomon , Spring		dition.			
2	Introd	uction to Data Co	ompression, Khalid Sa	ayood, Morgan Kaufr	nann Series, 3rd Edit	cion		
3	Crypto	ography and Netv	vork Security, William	n Stallings, Pearson E	Education Asia Public	ation, 5th Edition.		

	References						
1	Cryptography and Network Security, Behrouz Forouzan, McGraw-Hill, 1st Edition.						
2	The Data Compression Book, Mark Nelson, BPB publication, 2nd Edition						
3	Applied Cryptography, Bruce Schnerer, John Willey & Sons Inc. Publication, 2nd Edition						
	Useful links						
1	NPTEL lectures						

			CO-PO Mapp	oing		
			Programme C	utcomes (PO)		
	1	2	3	4	5	6
CO1			2			2
CO2				2	2	
The stren	gth of mapping i	s to be written as	s 1,2,3; Here, 1:	Low, 2: Medium	n, 3: High	
Each CO	of the course mu	ist map to at leas	st one PO.			

	Assessment						
	here are three components of lab assessment, LA1, LA2 and Lab ESE.						
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.			
Assessment	Based on	Conducted by	Typical Schedule	Marks			
τ Α 1	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30			
X 4 0	Lab activities,	Lab Course	During Week 7 to Week 12				

	LA2	Lab activities, Lab Course During week 7 to week 12		During Week / 10 Week 12	30	
	LAZ	attendance, journal Faculty Marks Submission at the e		Marks Submission at the end of Week 12	- 50	
ESE		Lab activities,	Lab Course	During Week 15 to Week 18	40	
	ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40	
	Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,		
	considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab					
	activities/Lab	performance shall inc	lude performing e	experiments, mini-project, presentations, drav	vings,	
	•	1 (1 '/ 11 /	• • • • • • • • • • • • • • • • • • • •			

programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Pl	Assessment Plan based on Bloom's Taxonomy Level (Marks)				
Bloom's Taxonomy Level	LA1	LA2	ESE	Total	
Remember					
Understand					
Apply	20	10	5	35	
Analyze	10	10	10	30	
Evaluate		10	10	20	
Create			15	15	
Total	30	30	40	100	

Walchand College of Engineering, Sangli			
(Government Aided Autonomous Institute)			
AY 2022-23			
Course Information			
Programme M.Tech. (Computer science and engineering)			
First Year M. Tech., Sem II			
6CO574			
Course Name Natural Language processing Lab			
Desired Requisites: NLP concepts			

Teaching Scheme		Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/Week		•	·		
Interaction -			C	redits: 1		

		Course Objectives			
	1	To introduce the students with the basics of NLP.			
	2	empower students for developing advanced NLP tools and solving practical problems in the field			
	3				
		Course Outcomes (CO) with Bloom's Taxonomy Level			

At the	At the end of the course, the students will be able to,		
CO1	assistants that are used in various business fields/areas	Apply	
CO2	Develop the knowledge of NLP	Create	
CO3			

Experiment Guidelines

Experiment list:

- 1. Preprocessing of text (Tokenization, Filtration, Script Validation, Stop Word Removal, Stemming)
- 2. Morphological Analysis
- 3. N-gram model
- 4. POS tagging
- 5. Chunking
- 6. Named Entity Recognition
- 7. Virtual Lab on Word Generator
- 8. Mini Project based on NLP Application

	Text Books						
	Practical Natural Language Processing: A Comprehensive Guide to Building Real-World						
1	NLP Systems by Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit						
	Surana (Published on June 17, 2020)						
2	Natural Language Processing with PyTorch: Build Intelligent Language Applications						
	Using Deep Learning by Delip Rao, Brian McMahan (Published on February 19, 2019)						
	References						

1	Natural Language Processing in Action: Understanding, analyzing, and generating text with Python by Hobson Lane, Hannes Hapke, Cole Howard (Published on April 14, 2019)	
2		
3		
	Useful links	
1	1 http://nlp-iiith.vlabs.ac.in/	

CO-PO Mapping						
	Programme Outcomes (PO)					
	1	2	3	4	5	6
CO1			2			2
CO2				2	2	

Assessment					
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.				
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.	
Assessment Based on Conducted by Typical Schedule Marks					
Lab activities, Lab Course During Week 1 to Week 6		During Week 1 to Week 6	30		
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	50	
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30	
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50	
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40	
LSE	attendance, journal	Faculty	Marks Submission at the end of Week 18		
Week 1 indic	Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,				
considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab					
activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,					
programming and other suitable activities, as per the nature and requirement of the lab course. The					
experimental	lab shall have typicall	y 8-10 experimen	ts.		

Assessment Plan based on Bloom's Taxonomy Level (Marks)				
Bloom's Taxonomy Level	LA1	LA2	ESE	Total
Remember				
Understand				
Apply	20	10	5	35
Analyze	10	10	10	30
Evaluate		10	10	20
Create			15	15
Total	30	30	40	100

Walchand College of Engineering, Sangli				
(Government Aided Autonomous Institute)				
AY 2022-23				
Course Information				
Programme M.Tech. (Computer science and engineering)				
First Year M. Tech., Sem II				
6CO579				
ADVANCED DAATABASE SYSTEM LAB				
DATABASE MANAGEMENT SYSTEM				

Teaching Scheme		Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/Week					
Interaction	-		Cr	edits: 1		

	Course Objectives	
1	To explore the features of a Database Management Systems	
2	To interface a database with front end tools	
3	To understand the internals of a database system	
	Course Outcomes (CO) with Bloom's Taxonomy Level	
At the	end of the course, the students will be able to,	
CO1	Ability to use databases for building web applications.	Apply
CO2	Gaining knowledge about the internals of a database system.	Create
CO3		

Mini Project Guidelines

Course Contents:

- 1. Basic SQL
- 2. Intermediate SQL
- 3. Advanced SQL
- 4. ER Modeling
- 5. Database Design and Normalization
- 6. Accessing Databases from Programs using JDBC
- 7. Building Web Applications using PHP & MySQL
- 8. Indexing and Query Processing
- 9. Query Evaluation Plans
- 10. Concurrency and Transactions
- 11. Big Data Analytics using Hadoop

		Text Books
1	1.	Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", 6 th edition, Tata McGraw Hill, 2011

2	
	References
1	 Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", 4th Edition, Pearson/Addision wesley, 2007
2	
3	

			СО-РО Марр	ing		
			Programme O	utcomes (PO)		
	1	2	3	4	5	6
CO1			2			2
CO2				2	2	
The stren	gth of mapping i	s to be written as	s 1,2,3; Here, 1:	Low, 2: Mediu	m, 3: High	

Each CO of the course must map to at least one PO.

		Asses	sment	
There are three	ee components of lab a	ssessment, LA1,	LA2 and Lab ESE.	
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.
Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40
ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,	

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks)						
Bloom's Taxonomy Level	LA1	LA2	ESE	Total		
Remember						
Understand						
Apply	20	10	5	35		
Analyze	10	10	10	30		
Evaluate		10	10	20		
Create			15	15		
Total	30	30	40	100		

	Walchand College of Engineering, Sangli
	(Government Aided Autonomous Institute)
	AY 2022-23
	Course Information
Programme	M.Tech. (Computer science and engineering)
Class, Semester	First Year M. Tech., Sem II
Course Code	6CO578
Course Name	Network Security Lab
Desired Requisites:	Basics of computer network

Teaching Scheme		Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/Week					
Interaction	-	Credits: 1				

	Course Objectives	
1	implies that unauthorized individuals mustn't have any sort of access to the info.	
2	Integrity for data means changes made to data are done only by authorized individu	als/systems.
3	Availability: this is applicable to systems and to data.	
	Course Outcomes (CO) with Bloom's Taxonomy Level	
At the	e end of the course, the students will be able to,	
CO1	Understanding security architectures, protocols and services in both wired and	UNDERSTA
	wireless networks	ND
CO2	Understand the role of security protocols in securing networks	APPLY
CO3	Discover, analyze and identify security issues in the network.	APPLY
CO4	Evaluate the use of an IDS and IPS in a working environment	ANALYZE
CO5	Apply security mechanisms, security policies, security components (such as protection domains and firewalls), port security and protection to secure networks	CREATE

Mini Project Guidelines

Course Contents:

1. Make a Detailed Report on Network Security Threats covering Structured, Unstructured, Internal and External Threats

2. Perform the following Scan using Wireshark and analyze your results

(a)Analyze TCP session

(b) Perform and analyze these scans

(i) Start a Wireshark capture. Open a Windows-> command window and perform a Host Scan (using ICMP packets) on a neighbours machine using nmap –sP [neighbors ip address]. Stop the capture and filter the traffic for ARP and ICMP packets.(ii)Start a new Wireshark capture, and then perform a host scan (ICMP scan) on a system out with the subnet, such as nmap –sP scanme.nmap.org.(Stop the capture and filter the traffic for ARP and ICMP packets and Compare

with previous results.

(iii) Start a new Wireshark capture, and then perform a complete Port Scan (in this case a TCP SYN scan) and an Operating System Fingerprint on a neighbours machine using nmap -O [neighbours ip address]. The -O option should provide the OS running on the scanned machine.Stop the capture and filter for source address == your machines address if necessary.

3. To Analysis Network using Wireshark for

(a)Traffic Monitoring (TCP slow down and HTTP slow down)

(b) Packet Sniffing

4. Explore, execute and analysis traffic using TCP Dump and Net discover tools

Software

5. To explore Shodan for (a) locating Boats and Ship Locations (b) Searching and capturing Live Cameras. (b) To Write a small NSE Script

6. To spoof IP address of your own system using Kali Linux

7.To sniff traffic using ARP Spoofing

8. To perform man in middle attack using DNS spoofing

9.To perform UDP session hijacking using Scapy

10.To perform TCP session hijacking using Shijack.

11. Write and execute commands

- To view routing Table
- To view network statistics of a network
- To view all routes
- To update/modify/add/delete routes in a routing table
- 12. To Perform HTTP Session Hijacking through Cookie stealing
- 13. Configuring IPSec VPN Tunnel Mode using Packet Tracer

14.Decryption SSI/TLS Traffic using Wireshark

15. To Configure AAA (TACACS+) on Packet Tracer for User Authentication

	16. User account Using TACACS AND RADIUS ON PACKET TRACER
	17. Configure Numbered ACL for a given topology.
	18. Perform Wireless Hacking using aerodumpng
	Text Books
1	B William Stallings, " Network Security Essentials (Applications and Standards)", Pearson Education., 5th Edition,2011
2	Ryan Russell, "Hack Proofing your network ", Wiley,2nd Edition,2002
	References
1	Karen Scarf one, "Guide to Intrusion and prevention System", NIST Special Publication, 2nd Edition, 2007
2	
	Usefull Links
1	https://nptel.ac.in/syllabus/syllabus.php?subjectId=106105031
2	https://www.cybrary.it/course/security-for-beginners/
3	https://www.udemy.com/topic/Network-Security/
4	https://www.coursera.org/courses?query=network%20security
5	https://www.edx.org/learn/network-security

	CO-PO Mapping Programme Outcomes (PO)									
	1									
CO1			2			2				
CO2				2	2					
CO3	1			2						
CO4		2			1					
CO5			2	1		2				

Assessment						
There are three	e components of lab a	ssessment, LA1,	LA2 and Lab ESE.			
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.		
Assessment	Based onConducted byTypical ScheduleMarks					
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30		
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50		
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30		
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50		

ESE	Lab activities,	Lab Course During Week 15 to Week 18		40	
	attendance, journal Faculty		Marks Submission at the end of Week 18	40	
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,		
considering a	26-week semester. Th	e actual schedule	shall be as per academic calendar. Lab		
activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,					
programming	and other suitable act	ivities, as per the	nature and requirement of the lab course. The	e	
experimental	lab shall have typicall	y 8-10 experimen	ts.		

Assessment Plan based on Bloom's Taxonomy Level (Marks)					
Bloom's Taxonomy Level	LA1	LA2	ESE	Total	
Remember					
Understand					
Apply	20	10	5	35	
Analyze	10	10	10	30	
Evaluate		10	10	20	
Create			15	15	
Total	30	30	40	100	

		W	alchand Colle	ge of Enginee	ring Sangli	
		••		Aided Autonomous In		
			1	AY 2022-23	isiliaic)	
				rse Information		
Drogre	ommo				(incoring)	
	Programme M.Tech. (Computer science and engineering) Class, Semester First Year M. Tech., Sem II					
Class, Cours			6C0577	n., sem n		
Cours		-		- 1 - 1-		
			Machine Learnin	g lad		
Desire	d Req	uisites:	Data Science			
Т	eachin	g Scheme		Examination	Scheme (Marks)	
Lectur	re	-	LA1	LA2	ESE	Total
Tutori	ial	-	30	30	40	100
Practi	cal	2 Hrs/Week				
Intera	ction	-		Cr	edits: 1	
				irse Objectives		
1			• •		o different applicat	
2		llustrate a range nesses.	e of machine learni	ng algorithms alon	g with their strength	is and
3			arning algorithms t	o solve problems (of moderate comple	
	10 40			D) with Bloom's T		
At the	end of	the course, the	students will be ab	ole to,	-	
CO1 Implement a range of machine learning algorithms along with their strengths and weaknesses.					Apply	
CO2	2 Apply machine learning algorithms to solve typical problems in Machine Learning.				Apply	
CO3	Analy	Analyze various machine learning tools				
			Mini F	Project Guidelines	5	
Cours	e Cont	tents:				
			sing Machine Le			
1.	-		egression using p	•		
2.	-		•	classify the Engl		
	-			and extraction al	gorithm.	
	-		logistic regressio	on.		
5.			KNN algorithm.			
	-	ementation of		1		
	-		Naïve Bayesian			
	-		Bayesian networ	К.		
		•	n EM algorithm.	these		
			n k-Means algori			
	-		evaluation technic	-		
12	. impl	ementation of	back propagatior	1 IOF AININ.		
				Text Books		
1	Т. На	stie, R. Tibshira			istical Learning", 2e	, 2008
2	2. Ch	ristopher Bisho	p, Pattern Recogni	tion and Machine	Learning, Springer 2	2016

	References
1	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "Introduction to
1	Statistical Learning", Springer, 2013
2	Richard Duda, Peter Hart, David Stork, "Pattern Classification", John Wiley & Sons,
	2e,2001
2	NPTEL online course by Prof. Balaraman Ravindran on "Introduction to Machine
3	Learning"

		CO-PO Mapp	oing				
Programme Outcomes (PO)							
1 2 3 4 5 6							
2		2	1				
	1	1	2				
		2	3	2	2		
	1 2	1 2 2 1	**	CO-PO Mapping Programme Outcomes (PO) 1 2 3 4 2 2 1 2 1 1 2 3 4 2 2 1 1 2 3 4 2 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 3 3 4 3 3 3			

		Asses	sment				
There are three	ee components of lab a	assessment, LA1,	LA2 and Lab ESE.				
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.			
Assessment	Based on	Conducted by	Typical Schedule	Marks			
ΙΑ1	Lab activities,	Lab Course	During Week 1 to Week 6	20			
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30			
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30			
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50			
ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40			
ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	18 40			
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,				
considering a	26-week semester. Th	ne actual schedule	shall be as per academic calendar. Lab				

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks)						
Bloom's Taxonomy Level	LA1	LA2	ESE	Total		
Remember						
Understand						
Apply	20	10	5	35		
Analyze	10	10	10	30		
Evaluate		10	10	20		
Create			15	15		
Total	30	30	40	100		